These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21977435)

  • 21. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces.
    Parra-Vicente S; Ibáñez-Ibáñez PF; Cabrerizo-Vílchez M; Sánchez-Almazo I; Rodríguez-Valverde MÁ; Ruiz-Cabello FJM
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113832. PubMed ID: 38447447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of a superhydrophobic surface using woven structures.
    Michielsen S; Lee HJ
    Langmuir; 2007 May; 23(11):6004-10. PubMed ID: 17465576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mimicking from Rose Petal to Lotus Leaf: Biomimetic Multiscale Hierarchical Particles with Tunable Water Adhesion.
    Chen C; Liu M; Zhang L; Hou Y; Yu M; Fu S
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7431-7440. PubMed ID: 30699291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low cost fabrication of a superhydrophobic V-grooved polymer surface.
    Hurst SM; Farshchian B; Brumfield L; Ok JT; Choi J; Kim J; Parkl S
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1884-7. PubMed ID: 23755612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The rose petal effect and the modes of superhydrophobicity.
    Bhushan B; Nosonovsky M
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4713-28. PubMed ID: 20855317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf.
    Barraza B; Olate-Moya F; Montecinos G; Ortega JH; Rosenkranz A; Tamburrino A; Palza H
    Sci Technol Adv Mater; 2022; 23(1):300-321. PubMed ID: 35557509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.
    Bhushan B
    Beilstein J Nanotechnol; 2011; 2():66-84. PubMed ID: 21977417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces.
    González Lazo MA; Katrantzis I; Dalle Vacche S; Karasu F; Leterrier Y
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges.
    Liu H; Zhang Z; Wu C; Su K; Kan X
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface micro/nanotopography, wetting properties and the potential for biomimetic icephobicity of skunk cabbage Symplocarpus foetidus.
    Ramachandran R; Nosonovsky M
    Soft Matter; 2014 Oct; 10(39):7797-803. PubMed ID: 25144747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.
    Zhang D; Chen F; Yang Q; Yong J; Bian H; Ou Y; Si J; Meng X; Hou X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4905-12. PubMed ID: 22909564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wetting of Surfaces Made of Hydrophobic Cavities.
    Lloyd BP; Bartlett PN; Wood RJ
    Langmuir; 2015 Sep; 31(34):9325-30. PubMed ID: 26267302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.