BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21977670)

  • 1. Identification of humic acid-like and fulvic acid-like natural organic matter in river water using fluorescence spectroscopy.
    Peiris RH; Budman H; Moresoli C; Legge RL
    Water Sci Technol; 2011; 63(10):2427-33. PubMed ID: 21977670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence technique for the characterization of natural organic matter in river water.
    Ahmad UK; Ulang Z; Yusop Z; Fong TL
    Water Sci Technol; 2002; 46(9):117-25. PubMed ID: 12448460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid.
    Li Y; Chen H; Wang F; Zhao F; Han X; Geng H; Gao L; Chen H; Yuan R; Yao J
    Environ Pollut; 2018 Dec; 243(Pt B):1334-1342. PubMed ID: 30268984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence excitation-emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages.
    Xiaoli C; Guixiang L; Xin Z; Yongxia H; Youcai Z
    Waste Manag; 2012 Mar; 32(3):438-47. PubMed ID: 22104617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Characterization of isolated fractions of NOM from Songhua River].
    Guo J; Ma J
    Huan Jing Ke Xue; 2005 Sep; 26(5):77-84. PubMed ID: 16366474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the properties of standard soil and aquatic fulvic and humic acids based on the data of differential absorbance and fluorescence spectroscopy.
    Liu S; Benedetti MF; Han W; Korshin GV
    Chemosphere; 2020 Dec; 261():128189. PubMed ID: 33113651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques.
    Sierra MM; Giovanela M; Parlanti E; Soriano-Sierra EJ
    Chemosphere; 2005 Feb; 58(6):715-33. PubMed ID: 15621185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence.
    Guéguen C; Cuss CW
    J Chromatogr A; 2011 Jul; 1218(27):4188-98. PubMed ID: 21227433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():718-30. PubMed ID: 24364992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC.
    Baghoth SA; Sharma SK; Amy GL
    Water Res; 2011 Jan; 45(2):797-809. PubMed ID: 20889181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of dissolved organic matter by oxidative polymerization with horseradish peroxidase.
    Jee SH; Kim YJ; Ko SO
    Water Sci Technol; 2010; 62(2):340-6. PubMed ID: 20651438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence analysis of humic and fulvic acids from two Brazilian oxisols as affected by biosolid amendment.
    Bertoncini EI; D'Orazio V; Senesi N; Mattiazzo ME
    Anal Bioanal Chem; 2005 Mar; 381(6):1281-8. PubMed ID: 15744515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.
    Furman O; Usenko S; Lau BL
    Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of Cu, Co, and Cs to fluorescent components of natural organic matter (NOM) from three contrasting sites.
    Hume S; Caron F; Siemann S
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20141-20153. PubMed ID: 29748802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons in molecular weight distributions and size-dependent optical properties among model and reference natural dissolved organic matter.
    Li D; Lin H; Guo L
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57638-57652. PubMed ID: 36971940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence excitation-emission matrix spectroscopy analysis of landfill leachate DOM in coagulation-flocculation process.
    Zhu G; Wang C; Dong X
    Environ Technol; 2017 Jun; 38(12):1489-1497. PubMed ID: 27609652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection.
    Wu FC; Evans RD; Dillon PJ
    Environ Sci Technol; 2003 Aug; 37(16):3687-93. PubMed ID: 12953882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence spectroscopic studies of natural organic matter fractions.
    Chen J; LeBoeuf EJ; Dai S; Gu B
    Chemosphere; 2003 Feb; 50(5):639-47. PubMed ID: 12685740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.
    Chen W; Westerhoff P; Leenheer JA; Booksh K
    Environ Sci Technol; 2003 Dec; 37(24):5701-10. PubMed ID: 14717183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.