These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21977905)

  • 1. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.
    Krishnamurthy M; Dugan A; Nwokoye A; Fung YH; Lancia JK; Majmudar CY; Mapp AK
    ACS Chem Biol; 2011 Dec; 6(12):1321-6. PubMed ID: 21977905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.
    Dugan A; Pricer R; Katz M; Mapp AK
    Protein Sci; 2016 Aug; 25(8):1371-7. PubMed ID: 27213278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast.
    Stafford GA; Morse RH
    Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptional activator GAL4-VP16 regulates the intra-molecular interactions of the TATA-binding protein.
    Mishra AK; Vanathi P; Bhargava P
    J Biosci; 2003 Jun; 28(4):423-36. PubMed ID: 12799489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator.
    Majmudar CY; Lee LW; Lancia JK; Nwokoye A; Wang Q; Wands AM; Wang L; Mapp AK
    J Am Chem Soc; 2009 Oct; 131(40):14240-2. PubMed ID: 19764747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of transcription factor recruitment by acidic activators.
    Ferreira ME; Hermann S; Prochasson P; Workman JL; Berndt KD; Wright AP
    J Biol Chem; 2005 Jun; 280(23):21779-84. PubMed ID: 15826952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions.
    Joiner CM; Breen ME; Clayton J; Mapp AK
    Chembiochem; 2017 Jan; 18(2):181-184. PubMed ID: 27966261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions.
    Joiner CM; Breen ME; Mapp AK
    Protein Sci; 2019 Jun; 28(6):1163-1170. PubMed ID: 30977234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.
    Hori R; Pyo S; Carey M
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6047-51. PubMed ID: 7597078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex.
    Kapoor P; Bao Y; Xiao J; Luo J; Shen J; Persinger J; Peng G; Ranish J; Bartholomew B; Shen X
    Genes Dev; 2015 Mar; 29(6):591-602. PubMed ID: 25792597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo.
    Hall DB; Struhl K
    J Biol Chem; 2002 Nov; 277(48):46043-50. PubMed ID: 12297514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3.
    Mohibullah N; Hahn S
    Genes Dev; 2008 Nov; 22(21):2994-3006. PubMed ID: 18981477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays.
    Neely KE; Hassan AH; Wallberg AE; Steger DJ; Cairns BR; Wright AP; Workman JL
    Mol Cell; 1999 Oct; 4(4):649-55. PubMed ID: 10549297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2.
    Kim JH; Saraf A; Florens L; Washburn M; Workman JL
    Genes Dev; 2010 Dec; 24(24):2766-71. PubMed ID: 21159817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system.
    Robinson KM; Schultz MC
    Biochemistry; 2005 Mar; 44(11):4551-61. PubMed ID: 15766286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction.
    Lancia JK; Nwokoye A; Dugan A; Joiner C; Pricer R; Mapp AK
    Biopolymers; 2014 Apr; 101(4):391-7. PubMed ID: 24037947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo.
    Burns LG; Peterson CL
    Mol Cell Biol; 1997 Aug; 17(8):4811-9. PubMed ID: 9234737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Interactions between the Human T-Cell Leukemia Virus Type 1 Antisense Protein HBZ and the SWI/SNF Chromatin Remodeling Family: Implications for Viral Life Cycle.
    Alasiri A; Abboud Guerr J; Hall WW; Sheehy N
    J Virol; 2019 Aug; 93(16):. PubMed ID: 31142665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2.
    Treich I; Cairns BR; de los Santos T; Brewster E; Carlson M
    Mol Cell Biol; 1995 Aug; 15(8):4240-8. PubMed ID: 7623818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that Swi/Snf directly represses transcription in S. cerevisiae.
    Martens JA; Winston F
    Genes Dev; 2002 Sep; 16(17):2231-6. PubMed ID: 12208846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.