These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21978393)
1. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. Ding MZ; Wang X; Yang Y; Yuan YJ OMICS; 2011 Oct; 15(10):647-53. PubMed ID: 21978393 [TBL] [Abstract][Full Text] [Related]
2. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. Wang X; Li BZ; Ding MZ; Zhang WW; Yuan YJ OMICS; 2013 Mar; 17(3):150-9. PubMed ID: 23421908 [TBL] [Abstract][Full Text] [Related]
3. Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. Xia JM; Yuan YJ J Agric Food Chem; 2009 Jan; 57(1):99-108. PubMed ID: 19049411 [TBL] [Abstract][Full Text] [Related]
4. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Li BZ; Yuan YJ Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542 [TBL] [Abstract][Full Text] [Related]
7. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Wang X; Jin M; Balan V; Jones AD; Li X; Li BZ; Dale BE; Yuan YJ Biotechnol Bioeng; 2014 Jan; 111(1):152-64. PubMed ID: 24404570 [TBL] [Abstract][Full Text] [Related]
8. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428 [TBL] [Abstract][Full Text] [Related]
9. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Keating JD; Panganiban C; Mansfield SD Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880 [TBL] [Abstract][Full Text] [Related]
10. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review]. Li H; Zhang X; Shen Y; Dong Y; Bao X Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474 [TBL] [Abstract][Full Text] [Related]
11. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis. Guo W; Chen Y; Wei N; Feng X PLoS One; 2016; 11(8):e0161448. PubMed ID: 27532329 [TBL] [Abstract][Full Text] [Related]
12. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K; Sanda T; Hasunuma T; Kondo A Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [TBL] [Abstract][Full Text] [Related]
13. Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae. Zhao J; Wang M; Yang Z; Gong Q; Lu Y; Yang Z Biotechnol Lett; 2005 Feb; 27(3):207-11. PubMed ID: 15717131 [TBL] [Abstract][Full Text] [Related]
14. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Cunha JT; Aguiar TQ; Romanà A; Oliveira C; Domingues L Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617 [TBL] [Abstract][Full Text] [Related]
15. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Palmqvist E; Grage H; Meinander NQ; Hahn-Hägerdal B Biotechnol Bioeng; 1999 Apr; 63(1):46-55. PubMed ID: 10099580 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome and metabolome analysis of Pichia stipitis to three representative lignocellulosic inhibitors. Zhu Y; Wu L; Zhu J; Xu Y; Yu S Arch Microbiol; 2019 Jul; 201(5):581-589. PubMed ID: 30478728 [TBL] [Abstract][Full Text] [Related]
17. Tolerance of S. cerevisiae and Z. mobilis to inhibitors produced during dilute acid hydrolysis of soybean meal. Lujan-Rhenals DE; Morawicki RO; Ricke SC J Environ Sci Health B; 2014; 49(4):305-11. PubMed ID: 24502218 [TBL] [Abstract][Full Text] [Related]
18. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C. Chen H; Li J; Wan C; Fang Q; Bai F; Zhao X FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31374572 [TBL] [Abstract][Full Text] [Related]
19. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Liu ZL; Slininger PJ; Gorsich SW Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621 [TBL] [Abstract][Full Text] [Related]
20. Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Soares CEVF; Bergmann JC; de Almeida JRM Braz J Microbiol; 2021 Jun; 52(2):575-586. PubMed ID: 33825150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]