These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 21978493)
1. Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. Park MR; Baek SH; de Los Reyes BG; Yun SJ; Hasenstein KH J Plant Physiol; 2012 Jan; 169(2):193-205. PubMed ID: 21978493 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the distribution of assimilation products and the characteristics of transcriptomes in rice by submergence during the ripening stage. Lee HS; Hwang WH; Jeong JH; Ahn SH; Baek JS; Jeong HY; Park HK; Ku BI; Yun JT; Lee GH; Choi KJ BMC Genomics; 2019 Jan; 20(1):18. PubMed ID: 30621581 [TBL] [Abstract][Full Text] [Related]
3. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice. Meng Q; Zhang W; Hu X; Shi X; Chen L; Dai X; Qu H; Xia Y; Liu W; Gu M; Xu G Plant J; 2020 Dec; 104(5):1269-1284. PubMed ID: 32996185 [TBL] [Abstract][Full Text] [Related]
4. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Lee SK; Jeon JS; Börnke F; Voll L; Cho JI; Goh CH; Jeong SW; Park YI; Kim SJ; Choi SB; Miyao A; Hirochika H; An G; Cho MH; Bhoo SH; Sonnewald U; Hahn TR Plant Cell Environ; 2008 Dec; 31(12):1851-63. PubMed ID: 18811733 [TBL] [Abstract][Full Text] [Related]
5. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Morita R; Sugino M; Hatanaka T; Misoo S; Fukayama H Plant Physiol; 2015 Apr; 167(4):1321-31. PubMed ID: 25717036 [TBL] [Abstract][Full Text] [Related]
6. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Wang Z; Xu Y; Chen T; Zhang H; Yang J; Zhang J Planta; 2015 May; 241(5):1091-107. PubMed ID: 25589060 [TBL] [Abstract][Full Text] [Related]
7. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Yamakawa H; Hakata M Plant Cell Physiol; 2010 May; 51(5):795-809. PubMed ID: 20304786 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide expression analysis of a rice mutant line under salt stress. Lee KJ; Kwon SJ; Hwang JE; Han SM; Jung I; Kim JB; Choi HI; Ryu J; Kang SY Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27813582 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Gene Expression in the Remobilization of Carbon Reserves in Rice Stems During Grain Filling. Wang GQ; Hao SS; Gao B; Chen MX; Liu YG; Yang JC; Ye NH; Zhang JH Plant Cell Physiol; 2017 Aug; 58(8):1391-1404. PubMed ID: 28575477 [TBL] [Abstract][Full Text] [Related]
11. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Kuai J; Liu Z; Wang Y; Meng Y; Chen B; Zhao W; Zhou Z; Oosterhuis DM Plant Sci; 2014 Jun; 223():79-98. PubMed ID: 24767118 [TBL] [Abstract][Full Text] [Related]
12. Expression profiling of starch metabolism-related plastidic translocator genes in rice. Toyota K; Tamura M; Ohdan T; Nakamura Y Planta; 2006 Jan; 223(2):248-57. PubMed ID: 16362329 [TBL] [Abstract][Full Text] [Related]
13. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Yang J; Zhang J; Wang Z; Zhu Q; Liu L Planta; 2002 Aug; 215(4):645-52. PubMed ID: 12172848 [TBL] [Abstract][Full Text] [Related]
14. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Boriboonkaset T; Theerawitaya C; Yamada N; Pichakum A; Supaibulwatana K; Cha-Um S; Takabe T; Kirdmanee C Protoplasma; 2013 Oct; 250(5):1157-67. PubMed ID: 23558902 [TBL] [Abstract][Full Text] [Related]
15. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Peleg Z; Reguera M; Tumimbang E; Walia H; Blumwald E Plant Biotechnol J; 2011 Sep; 9(7):747-58. PubMed ID: 21284800 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). Deng QW; Luo XD; Chen YL; Zhou Y; Zhang FT; Hu BL; Xie JK Biol Res; 2018 Mar; 51(1):7. PubMed ID: 29544529 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). Van Harsselaar JK; Lorenz J; Senning M; Sonnewald U; Sonnewald S BMC Genomics; 2017 Jan; 18(1):37. PubMed ID: 28056783 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomics and physiology reveal the mechanism of potassium indole-3-butyrate (IBAK) mediating rice resistance to salt stress. Zhou H; Liu M; Meng F; Zheng D; Feng N BMC Plant Biol; 2023 Nov; 23(1):569. PubMed ID: 37968598 [TBL] [Abstract][Full Text] [Related]
19. Sucrose is involved in the regulation of iron deficiency responses in rice (Oryza sativa L.). Chen PF; Chen L; Jiang ZR; Wang GP; Wang SH; Ding YF Plant Cell Rep; 2018 May; 37(5):789-798. PubMed ID: 29476246 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Cho JI; Lee SK; Ko S; Kim HK; Jun SH; Lee YH; Bhoo SH; Lee KW; An G; Hahn TR; Jeon JS Plant Cell Rep; 2005 Jun; 24(4):225-36. PubMed ID: 15759120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]