These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21978533)
1. Quantitative MAS NMR characterization of the LiMn(1/2)Ni(1/2)O(2) electrode/electrolyte interphase. Cuisinier M; Martin JF; Moreau P; Epicier T; Kanno R; Guyomard D; Dupré N Solid State Nucl Magn Reson; 2012 Apr; 42():51-61. PubMed ID: 21978533 [TBL] [Abstract][Full Text] [Related]
2. Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study. Okumura T; Fukutsuka T; Matsumoto K; Orikasa Y; Arai H; Ogumi Z; Uchimoto Y Dalton Trans; 2011 Oct; 40(38):9752-64. PubMed ID: 21869978 [TBL] [Abstract][Full Text] [Related]
3. Interphase evolution at two promising electrode materials for Li-ion batteries: LiFePO4 and LiNi1/2 Mn1/2O2. Dupré N; Cuisinier M; Martin JF; Guyomard D Chemphyschem; 2014 Jul; 15(10):1922-38. PubMed ID: 24789623 [TBL] [Abstract][Full Text] [Related]
4. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries. Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504 [TBL] [Abstract][Full Text] [Related]
5. Understanding (6)Li MAS NMR spectra of Li(2)MSiO(4) materials (M = Mn, Fe, Zn). Mali G; Rangus M; Sirisopanaporn C; Dominko R Solid State Nucl Magn Reson; 2012 Apr; 42():33-41. PubMed ID: 22033467 [TBL] [Abstract][Full Text] [Related]
6. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. Rock SE; Wu L; Crain DJ; Krishnan S; Roy D ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452 [TBL] [Abstract][Full Text] [Related]
7. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Sacci RL; Black JM; Balke N; Dudney NJ; More KL; Unocic RR Nano Lett; 2015 Mar; 15(3):2011-8. PubMed ID: 25706693 [TBL] [Abstract][Full Text] [Related]
9. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode. Wang J; Zhang Q; Li X; Wang Z; Guo H; Xu D; Zhang K Phys Chem Chem Phys; 2014 Aug; 16(30):16021-9. PubMed ID: 24963917 [TBL] [Abstract][Full Text] [Related]
10. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Kitta M; Akita T; Maeda Y; Kohyama M Langmuir; 2012 Aug; 28(33):12384-92. PubMed ID: 22839691 [TBL] [Abstract][Full Text] [Related]
11. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
12. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. Bréger J; Dupré N; Chupas PJ; Lee PL; Proffen T; Parise JB; Grey CP J Am Chem Soc; 2005 May; 127(20):7529-37. PubMed ID: 15898804 [TBL] [Abstract][Full Text] [Related]
13. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
14. Fe valence determination and Li elemental distribution in lithiated FeO₀.₇F₁.₃/C nanocomposite battery materials by electron energy loss spectroscopy (EELS). Cosandey F; Su D; Sina M; Pereira N; Amatucci GG Micron; 2012 Jan; 43(1):22-9. PubMed ID: 21696971 [TBL] [Abstract][Full Text] [Related]
15. Spectroelectrochemical investigation of an electrogenerated graphitic oxide solid-electrolyte interphase. Walker EK; Vanden Bout DA; Stevenson KJ Anal Chem; 2012 Oct; 84(19):8190-7. PubMed ID: 22963466 [TBL] [Abstract][Full Text] [Related]
16. Direct hydrothermal synthesis of ternary Li-Mn-O oxide ion-sieves. Zhang QH; Sun SY; Li SP; Yin XS; Yu JG Ann N Y Acad Sci; 2009 Apr; 1161():500-7. PubMed ID: 19426343 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Yamada Y; Iriyama Y; Abe T; Ogumi Z Langmuir; 2009 Nov; 25(21):12766-70. PubMed ID: 19856995 [TBL] [Abstract][Full Text] [Related]
18. Reversible Deposition and Stripping of the Cathode Electrolyte Interphase on Li Hestenes JC; Ells AW; Navarro Goldaraz M; Sergeyev IV; Itin B; Marbella LE Front Chem; 2020; 8():681. PubMed ID: 32850679 [TBL] [Abstract][Full Text] [Related]
19. Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Etacheri V; Geiger U; Gofer Y; Roberts GA; Stefan IC; Fasching R; Aurbach D Langmuir; 2012 Apr; 28(14):6175-84. PubMed ID: 22428945 [TBL] [Abstract][Full Text] [Related]
20. Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. Dupke S; Langer T; Pöttgen R; Winter M; Eckert H Solid State Nucl Magn Reson; 2012 Apr; 42():17-25. PubMed ID: 21996453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]