These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21978577)

  • 1. Residual structure in unfolded proteins.
    Bowler BE
    Curr Opin Struct Biol; 2012 Feb; 22(1):4-13. PubMed ID: 21978577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental characterization of the denatured state ensemble of proteins.
    Cho JH; Raleigh DP
    Methods Mol Biol; 2009; 490():339-51. PubMed ID: 19157090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The denatured state ensemble contains significant local and long-range structure under native conditions: analysis of the N-terminal domain of ribosomal protein L9.
    Meng W; Luan B; Lyle N; Pappu RV; Raleigh DP
    Biochemistry; 2013 Apr; 52(15):2662-71. PubMed ID: 23480024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of Protein Unfolded State Energetics: Experimental and Computational Studies Demonstrate That Non-Native Side-Chain Interactions Stabilize Local Native Backbone Structure.
    Zou J; Xiao S; Simmerling C; Raleigh DP
    J Phys Chem B; 2021 Apr; 125(13):3269-3277. PubMed ID: 33779182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic interactions in the denatured state ensemble: their effect upon protein folding and protein stability.
    Cho JH; Sato S; Horng JC; Anil B; Raleigh DP
    Arch Biochem Biophys; 2008 Jan; 469(1):20-8. PubMed ID: 17900519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of electrostatic interactions in the denatured state ensemble of the N-terminal domain of L9 under native conditions.
    Meng W; Raleigh DP
    Proteins; 2011 Dec; 79(12):3500-10. PubMed ID: 21915914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetically significant networks of coupled interactions within an unfolded protein.
    Cho JH; Meng W; Sato S; Kim EY; Schindelin H; Raleigh DP
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12079-84. PubMed ID: 25099351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-random-coil behavior as a consequence of extensive PPII structure in the denatured state.
    Cortajarena AL; Lois G; Sherman E; O'Hern CS; Regan L; Haran G
    J Mol Biol; 2008 Sep; 382(1):203-12. PubMed ID: 18644382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random-coil behavior and the dimensions of chemically unfolded proteins.
    Kohn JE; Millett IS; Jacob J; Zagrovic B; Dillon TM; Cingel N; Dothager RS; Seifert S; Thiyagarajan P; Sosnick TR; Hasan MZ; Pande VS; Ruczinski I; Doniach S; Plaxco KW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12491-6. PubMed ID: 15314214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there or isn't there? The case for (and against) residual structure in chemically denatured proteins.
    McCarney ER; Kohn JE; Plaxco KW
    Crit Rev Biochem Mol Biol; 2005; 40(4):181-9. PubMed ID: 16126485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual ordered structure in denatured proteins and the problem of protein folding.
    Basharov MA
    Indian J Biochem Biophys; 2012 Feb; 49(1):7-17. PubMed ID: 22435139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassessing random-coil statistics in unfolded proteins.
    Fitzkee NC; Rose GD
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12497-502. PubMed ID: 15314216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The concept of a random coil. Residual structure in peptides and denatured proteins.
    Smith LJ; Fiebig KM; Schwalbe H; Dobson CM
    Fold Des; 1996; 1(5):R95-106. PubMed ID: 9080177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins.
    Nick Pace C; Huyghues-Despointes BM; Fu H; Takano K; Scholtz JM; Grimsley GR
    Protein Sci; 2010 May; 19(5):929-43. PubMed ID: 20198681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motional properties of unfolded ubiquitin: a model for a random coil protein.
    Wirmer J; Peti W; Schwalbe H
    J Biomol NMR; 2006 Jul; 35(3):175-86. PubMed ID: 16865418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes.
    Holthauzen LM; Rösgen J; Bolen DW
    Biochemistry; 2010 Feb; 49(6):1310-8. PubMed ID: 20073511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of denatured and intermediate states of folding on protein aggregation.
    Fawzi NL; Chubukov V; Clark LA; Brown S; Head-Gordon T
    Protein Sci; 2005 Apr; 14(4):993-1003. PubMed ID: 15772307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Gaussian-chain model for treating residual charge-charge interactions in the unfolded state of proteins.
    Zhou HX
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3569-74. PubMed ID: 11891295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hairpin folding dynamics: the cold-denatured state is predisposed for rapid refolding.
    Dyer RB; Maness SJ; Franzen S; Fesinmeyer RM; Olsen KA; Andersen NH
    Biochemistry; 2005 Aug; 44(30):10406-15. PubMed ID: 16042418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.