BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 21978629)

  • 1. Metabolic stress, reactive oxygen species, and arrhythmia.
    Jeong EM; Liu M; Sturdy M; Gao G; Varghese ST; Sovari AA; Dudley SC
    J Mol Cell Cardiol; 2012 Feb; 52(2):454-63. PubMed ID: 21978629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.
    Dey S; DeMazumder D; Sidor A; Foster DB; O'Rourke B
    Circ Res; 2018 Jul; 123(3):356-371. PubMed ID: 29898892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria and arrhythmias.
    Yang KC; Bonini MG; Dudley SC
    Free Radic Biol Med; 2014 Jun; 71():351-361. PubMed ID: 24713422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Role of Mitochondria in Arrhythmogenesis.
    Gambardella J; Sorriento D; Ciccarelli M; Del Giudice C; Fiordelisi A; Napolitano L; Trimarco B; Iaccarino G; Santulli G
    Adv Exp Med Biol; 2017; 982():191-202. PubMed ID: 28551788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of sudden cardiac death: oxidants and metabolism.
    Yang KC; Kyle JW; Makielski JC; Dudley SC
    Circ Res; 2015 Jun; 116(12):1937-55. PubMed ID: 26044249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevance of mitochondrial oxidative stress to arrhythmias: Innovative concepts to target treatments.
    Liu C; Ma N; Guo Z; Zhang Y; Zhang J; Yang F; Su X; Zhang G; Xiong X; Xing Y
    Pharmacol Res; 2022 Jan; 175():106027. PubMed ID: 34890774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of sodium and calcium handling.
    Wagner S; Rokita AG; Anderson ME; Maier LS
    Antioxid Redox Signal; 2013 Mar; 18(9):1063-77. PubMed ID: 22900788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-derived ROS bursts disturb Ca²⁺ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study.
    Li Q; Su D; O'Rourke B; Pogwizd SM; Zhou L
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H623-36. PubMed ID: 25539710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac mitochondria and arrhythmias.
    Brown DA; O'Rourke B
    Cardiovasc Res; 2010 Nov; 88(2):241-9. PubMed ID: 20621924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia.
    Hamilton S; Terentyeva R; Clements RT; Belevych AE; Terentyev D
    J Mol Cell Cardiol; 2021 Jul; 156():105-113. PubMed ID: 33857485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium Signaling and Reactive Oxygen Species in Mitochondria.
    Bertero E; Maack C
    Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Through modulation of cardiac Ca
    Larbig R; Reda S; Paar V; Trost A; Leitner J; Weichselbaumer S; Motloch KA; Wernly B; Arrer A; Strauss B; Lichtenauer M; Reitsamer HA; Eckardt L; Seebohm G; Hoppe UC; Motloch LJ
    Exp Physiol; 2017 Jun; 102(6):650-662. PubMed ID: 28370799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR.
    Kim TY; Terentyeva R; Roder KH; Li W; Liu M; Greener I; Hamilton S; Polina I; Murphy KR; Clements RT; Dudley SC; Koren G; Choi BR; Terentyev D
    Cardiovasc Res; 2017 Mar; 113(3):343-353. PubMed ID: 28096168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial calcium uniporter promotes arrhythmias caused by high-fat diet.
    Joseph LC; Reyes MV; Homan EA; Gowen B; Avula UMR; Goulbourne CN; Wan EY; Elrod JW; Morrow JP
    Sci Rep; 2021 Sep; 11(1):17808. PubMed ID: 34497331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute administration of tumour necrosis factor-α induces spontaneous calcium release via the reactive oxygen species pathway in atrial myocytes.
    Zuo S; Li LL; Ruan YF; Jiang L; Li X; Li SN; Wen SN; Bai R; Liu N; Du X; Dong JZ; Ma CS
    Europace; 2018 Aug; 20(8):1367-1374. PubMed ID: 29045723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of Mitochondrial Ca
    Bertero E; Nickel A; Kohlhaas M; Hohl M; Sequeira V; Brune C; Schwemmlein J; Abeßer M; Schuh K; Kutschka I; Carlein C; Münker K; Atighetchi S; Müller A; Kazakov A; Kappl R; von der Malsburg K; van der Laan M; Schiuma AF; Böhm M; Laufs U; Hoth M; Rehling P; Kuhn M; Dudek J; von der Malsburg A; Prates Roma L; Maack C
    Circulation; 2021 Nov; 144(21):1694-1713. PubMed ID: 34648376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure.
    Dietl A; Maack C
    Curr Heart Fail Rep; 2017 Aug; 14(4):338-349. PubMed ID: 28656516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors.
    Ho HT; Stevens SC; Terentyeva R; Carnes CA; Terentyev D; Györke S
    J Physiol; 2011 Oct; 589(Pt 19):4697-708. PubMed ID: 21807619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy.
    Coppini R; Santini L; Olivotto I; Ackerman MJ; Cerbai E
    Cardiovasc Res; 2020 Jul; 116(9):1585-1599. PubMed ID: 32365196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of regional mitochondrial depolarization on electrical propagation: implications for arrhythmogenesis.
    Zhou L; Solhjoo S; Millare B; Plank G; Abraham MR; Cortassa S; Trayanova N; O'Rourke B
    Circ Arrhythm Electrophysiol; 2014 Feb; 7(1):143-51. PubMed ID: 24382411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.