BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 21978629)

  • 21. From cardiac mitochondrial dysfunction to clinical arrhythmias.
    Montaigne D; Maréchal X; Lacroix D; Staels B
    Int J Cardiol; 2015 Apr; 184():597-599. PubMed ID: 25769006
    [No Abstract]   [Full Text] [Related]  

  • 22. Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes.
    Solhjoo S; O'Rourke B
    J Mol Cell Cardiol; 2015 Jan; 78():90-9. PubMed ID: 25268650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CaMKII oxidative activation and the pathogenesis of cardiac disease.
    Luczak ED; Anderson ME
    J Mol Cell Cardiol; 2014 Aug; 73():112-6. PubMed ID: 24530899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.
    Kohlhaas M; Liu T; Knopp A; Zeller T; Ong MF; Böhm M; O'Rourke B; Maack C
    Circulation; 2010 Apr; 121(14):1606-13. PubMed ID: 20351235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular calcium mishandling leads to cardiac dysfunction and ventricular arrhythmias in a mouse model of propionic acidemia.
    Tamayo M; Fulgencio-Covián A; Navarro-García JA; Val-Blasco A; Ruiz-Hurtado G; Gil-Fernández M; Martín-Nunes L; Lopez JA; Desviat LR; Delgado C; Richard E; Fernández-Velasco M
    Biochim Biophys Acta Mol Basis Dis; 2020 Jan; 1866(1):165586. PubMed ID: 31678161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular Na⁺ and cardiac metabolism.
    Bay J; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2013 Aug; 61():20-7. PubMed ID: 23727097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examination of the Changes in Calcium Homeostasis in the Delayed Antiarrhythmic Effect of Sodium Nitrite.
    Demeter-Haludka V; Kovács M; Prorok J; Nagy N; Varró A; Végh Á
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium overload-induced arrhythmia is suppressed by farnesol in rat heart.
    Souza DS; Menezes-Filho JER; Santos-Miranda A; Jesus ICG; Silva Neto JA; Guatimosim S; Cruz JS; Vasconcelos CML
    Eur J Pharmacol; 2019 Sep; 859():172488. PubMed ID: 31233746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts.
    Cooper LL; Li W; Lu Y; Centracchio J; Terentyeva R; Koren G; Terentyev D
    J Physiol; 2013 Dec; 591(23):5895-911. PubMed ID: 24042501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects.
    Lucas AM; Caldas FR; da Silva AP; Ventura MM; Leite IM; Filgueiras AB; Silva CG; Kowaltowski AJ; Facundo HT
    Chem Biol Interact; 2017 Jan; 261():50-55. PubMed ID: 27867086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels.
    Zhao Z; Yin Y; Wu H; Jiang M; Lou J; Bai G; Luo G
    Cell Physiol Biochem; 2013; 32(5):1342-53. PubMed ID: 24280730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From mitochondrial dynamics to arrhythmias.
    Aon MA; Cortassa S; Akar FG; Brown DA; Zhou L; O'Rourke B
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1940-8. PubMed ID: 19703656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibiting Na+/K+ ATPase can impair mitochondrial energetics and induce abnormal Ca2+ cycling and automaticity in guinea pig cardiomyocytes.
    Li Q; Pogwizd SM; Prabhu SD; Zhou L
    PLoS One; 2014; 9(4):e93928. PubMed ID: 24722410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting ryanodine receptors for anti-arrhythmic therapy.
    McCauley MD; Wehrens XH
    Acta Pharmacol Sin; 2011 Jun; 32(6):749-57. PubMed ID: 21642946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wenxin Keli Regulates Mitochondrial Oxidative Stress and Homeostasis and Improves Atrial Remodeling in Diabetic Rats.
    Gong M; Yuan M; Meng L; Zhang Z; Tse G; Zhao Y; Zhang Y; Yuan M; Liang X; Fan G; Yan GX; Li G; Liu T
    Oxid Med Cell Longev; 2020; 2020():2468031. PubMed ID: 32104528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology.
    Köhler AC; Sag CM; Maier LS
    J Mol Cell Cardiol; 2014 Aug; 73():92-102. PubMed ID: 24631768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis.
    Tse G; Yan BP; Chan YW; Tian XY; Huang Y
    Front Physiol; 2016; 7():313. PubMed ID: 27536244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload.
    Wagner S; Ruff HM; Weber SL; Bellmann S; Sowa T; Schulte T; Anderson ME; Grandi E; Bers DM; Backs J; Belardinelli L; Maier LS
    Circ Res; 2011 Mar; 108(5):555-65. PubMed ID: 21252154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The role of reactive oxygen species (ROS) in arrhythmogenesis].
    Tytman K; Kaczmarek K; Lipińska S; Wranicz JK
    Pol Merkur Lekarski; 2016 Jan; 40(235):32-5. PubMed ID: 26891434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart.
    Akhmedov AT; Rybin V; Marín-García J
    Heart Fail Rev; 2015 Mar; 20(2):227-49. PubMed ID: 25192828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.