These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 21978911)

  • 21. Vertebrate endoderm development and organ formation.
    Zorn AM; Wells JM
    Annu Rev Cell Dev Biol; 2009; 25():221-51. PubMed ID: 19575677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vangl2 coordinates cell rearrangements during gut elongation.
    Dush MK; Nascone-Yoder NM
    Dev Dyn; 2019 Jul; 248(7):569-582. PubMed ID: 31081963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis.
    Klein C; Mikutta J; Krueger J; Scholz K; Brinkmann J; Liu D; Veerkamp J; Siegel D; Abdelilah-Seyfried S; le Noble F
    Development; 2011 May; 138(10):1935-45. PubMed ID: 21471154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional specification in the Drosophila endoderm.
    Nakagoshi H
    Dev Growth Differ; 2005 Aug; 47(6):383-92. PubMed ID: 16109036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation.
    Yang Q; Xue SL; Chan CJ; Rempfler M; Vischi D; Maurer-Gutierrez F; Hiiragi T; Hannezo E; Liberali P
    Nat Cell Biol; 2021 Jul; 23(7):733-744. PubMed ID: 34155381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut.
    Dush MK; Nascone-Yoder NM
    Development; 2013 Apr; 140(7):1457-66. PubMed ID: 23462475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Intestinal epithelium and meconium formation].
    Schwidt W
    Verh Anat Ges; 1971; 66():55-61. PubMed ID: 5161897
    [No Abstract]   [Full Text] [Related]  

  • 28. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis.
    Ng AN; de Jong-Curtain TA; Mawdsley DJ; White SJ; Shin J; Appel B; Dong PD; Stainier DY; Heath JK
    Dev Biol; 2005 Oct; 286(1):114-35. PubMed ID: 16125164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development.
    Duluc I; Freund JN; Leberquier C; Kedinger M
    J Cell Biol; 1994 Jul; 126(1):211-21. PubMed ID: 8027179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods.
    Elinson RP
    J Exp Zool B Mol Dev Evol; 2009 Sep; 312(6):526-32. PubMed ID: 18473365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional networks in liver and intestinal development.
    Sheaffer KL; Kaestner KH
    Cold Spring Harb Perspect Biol; 2012 Sep; 4(9):a008284. PubMed ID: 22952394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis.
    Viotti M; Foley AC; Hadjantonakis AK
    Philos Trans R Soc Lond B Biol Sci; 2014 Dec; 369(1657):. PubMed ID: 25349455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis.
    André M; Ando S; Ballagny C; Durliat M; Poupard G; Briançon C; Babin PJ
    Int J Dev Biol; 2000 Feb; 44(2):249-52. PubMed ID: 10794084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium.
    Bell SM; Zhang L; Xu Y; Besnard V; Wert SE; Shroyer N; Whitsett JA
    Dev Biol; 2013 Mar; 375(2):128-39. PubMed ID: 23266329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene.
    Benahmed F; Gross I; Gaunt SJ; Beck F; Jehan F; Domon-Dell C; Martin E; Kedinger M; Freund JN; Duluc I
    Gastroenterology; 2008 Oct; 135(4):1238-1247, 1247.e1-3. PubMed ID: 18655789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endoderm- and mesenchyme-dependent commitment of the differentiated epithelial cell types in the developing intestine of rat.
    Ratineau C; Duluc I; Pourreyron C; Kedinger M; Freund JN; Roche C
    Differentiation; 2003 Mar; 71(2):163-9. PubMed ID: 12641570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular and molecular mechanisms of intestinal elongation in mammals: the long and short of it.
    Cervantes S
    Histol Histopathol; 2013 Apr; 28(4):427-36. PubMed ID: 23203569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary.
    Koike H; Iwasawa K; Ouchi R; Maezawa M; Giesbrecht K; Saiki N; Ferguson A; Kimura M; Thompson WL; Wells JM; Zorn AM; Takebe T
    Nature; 2019 Oct; 574(7776):112-116. PubMed ID: 31554966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early development of the gut: new light on an old hypothesis.
    Rawdon BB
    Cell Biol Int; 2001; 25(1):9-15. PubMed ID: 11237404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From Definitive Endoderm to Gut-a Process of Growth and Maturation.
    Guiu J; Jensen KB
    Stem Cells Dev; 2015 Sep; 24(17):1972-83. PubMed ID: 26134088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.