BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21978991)

  • 41. A Novel CRISPR/Cas9-Based Cellular Model to Explore Adenylyl Cyclase and cAMP Signaling.
    Soto-Velasquez M; Hayes MP; Alpsoy A; Dykhuizen EC; Watts VJ
    Mol Pharmacol; 2018 Sep; 94(3):963-972. PubMed ID: 29950405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cyclic AMP synthesis and hydrolysis in the normal and failing heart.
    Guellich A; Mehel H; Fischmeister R
    Pflugers Arch; 2014 Jun; 466(6):1163-75. PubMed ID: 24756197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of ischaemia and reperfusion on cardiac signal transduction. G protein content, adenylyl cyclase activity, cyclic AMP content, and forskolin and dibutyryl cyclic AMP-induced inotropy in the rat Langendorff heart.
    van den Ende R; Batink HD; Michel MC; van Zwieten PA
    Fundam Clin Pharmacol; 1994; 8(5):408-16. PubMed ID: 7875634
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adenylyl cyclase expression and modulation of cAMP in rat taste cells.
    Abaffy T; Trubey KR; Chaudhari N
    Am J Physiol Cell Physiol; 2003 Jun; 284(6):C1420-8. PubMed ID: 12606315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of the interaction between RGS2 and adenylyl cyclase.
    Salim S; Dessauer CW
    Methods Enzymol; 2004; 390():83-99. PubMed ID: 15488172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective effects of ethanol on the generation of cAMP by particular members of the adenylyl cyclase family.
    Yoshimura M; Tabakoff B
    Alcohol Clin Exp Res; 1995 Dec; 19(6):1435-40. PubMed ID: 8749807
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains.
    Ostrom RS; Liu X; Head BP; Gregorian C; Seasholtz TM; Insel PA
    Mol Pharmacol; 2002 Nov; 62(5):983-92. PubMed ID: 12391260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of functional domains of adenylyl cyclase using in vivo chimeras.
    Levin LR; Reed RR
    J Biol Chem; 1995 Mar; 270(13):7573-9. PubMed ID: 7706305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opposing regulatory effects of protein kinase C on the cAMP cascade in human HL-60 promyelocytic leukemia cells.
    Byung-Chang S; Se-Young C; Jang-Soo C; Kyong-Tai K
    Eur J Pharmacol; 1998 Jul; 353(1):105-15. PubMed ID: 9721047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conditional activation of cAMP signal transduction by protein kinase C. The effect of phorbol esters on adenylyl cyclase in permeabilized and intact cells.
    Morimoto BH; Koshland DE
    J Biol Chem; 1994 Feb; 269(6):4065-9. PubMed ID: 8307964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of adenylyl cyclase in the central nervous system.
    Chern Y
    Cell Signal; 2000 Apr; 12(4):195-204. PubMed ID: 10781926
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenylyl cyclase isoforms and vasopressin enhancement of agonist-stimulated cAMP in vascular smooth muscle cells.
    Zhang J; Sato M; Duzic E; Kubalak SW; Lanier SM; Webb JG
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H971-80. PubMed ID: 9277517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins.
    Pidoux G; Taskén K
    J Mol Endocrinol; 2010 May; 44(5):271-84. PubMed ID: 20150326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of type V adenylyl cyclase is required for epidermal growth factor-mediated stimulation of cAMP accumulation.
    Chen Z; Nield HS; Sun H; Barbier A; Patel TB
    J Biol Chem; 1995 Nov; 270(46):27525-30. PubMed ID: 7499211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identity of adenylyl cyclase isoform determines the G protein mediating chronic opioid-induced adenylyl cyclase supersensitivity.
    Ammer H; Christ TE
    J Neurochem; 2002 Nov; 83(4):818-27. PubMed ID: 12421353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3.
    Dodge-Kafka KL; Bauman A; Mayer N; Henson E; Heredia L; Ahn J; McAvoy T; Nairn AC; Kapiloff MS
    J Biol Chem; 2010 Apr; 285(15):11078-86. PubMed ID: 20106966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of nephron water and electrolyte transport by adenylyl cyclases.
    Rieg T; Kohan DE
    Am J Physiol Renal Physiol; 2014 Apr; 306(7):F701-9. PubMed ID: 24477683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The complex of G protein regulator RGS9-2 and Gβ(5) controls sensitization and signaling kinetics of type 5 adenylyl cyclase in the striatum.
    Xie K; Masuho I; Brand C; Dessauer CW; Martemyanov KA
    Sci Signal; 2012 Aug; 5(239):ra63. PubMed ID: 22932702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyclic adenosine monophosphate signaling in the rat vomeronasal organ: role of an adenylyl cyclase type VI.
    Rössler P; Kroner C; Krieger J; Löbel D; Breer H; Boekhoff I
    Chem Senses; 2000 Jun; 25(3):313-22. PubMed ID: 10866989
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells.
    Ramos LS; Zippin JH; Kamenetsky M; Buck J; Levin LR
    J Gen Physiol; 2008 Sep; 132(3):329-38. PubMed ID: 18695009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.