These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 21979296)
41. The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment. Stettner M; Kaulfuss S; Burfeind P; Schweyer S; Strauss A; Ringert RH; Thelen P Mol Cancer Ther; 2007 Oct; 6(10):2626-33. PubMed ID: 17913855 [TBL] [Abstract][Full Text] [Related]
42. Prostate-specific antigen levels in relation to consumption of nonsteroidal anti-inflammatory drugs and acetaminophen: results from the 2001-2002 National Health and Nutrition Examination Survey. Singer EA; Palapattu GS; van Wijngaarden E Cancer; 2008 Oct; 113(8):2053-7. PubMed ID: 18780337 [TBL] [Abstract][Full Text] [Related]
43. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Ide H; Tokiwa S; Sakamaki K; Nishio K; Isotani S; Muto S; Hama T; Masuda H; Horie S Prostate; 2010 Jul; 70(10):1127-33. PubMed ID: 20503397 [TBL] [Abstract][Full Text] [Related]
44. Early prostate-specific antigen (PSA) kinetics following prostate carcinoma radiotherapy: prognostic value of a time-and-PSA threshold model. Cavanaugh SX; Kupelian PA; Fuller CD; Reddy C; Bradshaw P; Pollock BH; Fuss M Cancer; 2004 Jul; 101(1):96-105. PubMed ID: 15221994 [TBL] [Abstract][Full Text] [Related]
45. Genistein induces cell growth inhibition in prostate cancer through the suppression of telomerase activity. Ouchi H; Ishiguro H; Ikeda N; Hori M; Kubota Y; Uemura H Int J Urol; 2005 Jan; 12(1):73-80. PubMed ID: 15661057 [TBL] [Abstract][Full Text] [Related]
46. Valproic acid synergistically enhances the cytotoxicity of gossypol in DU145 prostate cancer cells: an iTRTAQ-based quantitative proteomic analysis. Ouyang DY; Ji YH; Saltis M; Xu LH; Zhang YT; Zha QB; Cai JY; He XH J Proteomics; 2011 Sep; 74(10):2180-93. PubMed ID: 21726675 [TBL] [Abstract][Full Text] [Related]
47. Antiepileptic drugs and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Salminen JK; Kuoppamäki V; Talala K; Taari K; Mäkinen J; Peltola J; Tammela TLJ; Auvinen A; Murtola TJ Int J Cancer; 2021 Jul; 149(2):307-315. PubMed ID: 33634851 [TBL] [Abstract][Full Text] [Related]
48. A multiple-loop, double-cube microarray design applied to prostate cancer cell lines with variable sensitivity to histone deacetylase inhibitors. Kortenhorst MS; Zahurak M; Shabbeer S; Kachhap S; Galloway N; Parmigiani G; Verheul HM; Carducci MA Clin Cancer Res; 2008 Nov; 14(21):6886-94. PubMed ID: 18980983 [TBL] [Abstract][Full Text] [Related]
49. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. Pedro Ferreira J; Pitt B; Zannad F Lancet Healthy Longev; 2021 Jun; 2(6):e371-e379. PubMed ID: 36098145 [TBL] [Abstract][Full Text] [Related]
50. Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Ganai SA Biomed Pharmacother; 2016 Jul; 81():250-257. PubMed ID: 27261601 [TBL] [Abstract][Full Text] [Related]
51. Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer. Ganai SA Biomed Pharmacother; 2017 Jan; 85():47-56. PubMed ID: 27930986 [TBL] [Abstract][Full Text] [Related]
53. Combination Therapies Using Metformin and/or Valproic Acid in Prostate Cancer: Possible Mechanistic Interactions. Tran LNK; Kichenadasse G; Sykes PJ Curr Cancer Drug Targets; 2019; 19(5):368-381. PubMed ID: 30039761 [TBL] [Abstract][Full Text] [Related]
54. Histone Deacetylase Inhibitors Delivery using Nanoparticles with Intrinsic Passive Tumor Targeting Properties for Tumor Therapy. El Bahhaj F; Denis I; Pichavant L; Delatouche R; Collette F; Linot C; Pouliquen D; Grégoire M; Héroguez V; Blanquart C; Bertrand P Theranostics; 2016; 6(6):795-807. PubMed ID: 27162550 [TBL] [Abstract][Full Text] [Related]
55. Anti-epileptic drugs and prostate cancer-specific mortality compared to non-users of anti-epileptic drugs in the Finnish Randomized Study of Screening for Prostate Cancer. Salminen JK; Mehtola A; Talala K; Taari K; Mäkinen J; Peltola J; Tammela TLJ; Auvinen A; Murtola TJ Br J Cancer; 2022 Sep; 127(4):704-711. PubMed ID: 35505251 [TBL] [Abstract][Full Text] [Related]
56. Histone deacetylase inhibitors restore cell surface expression of the coxsackie adenovirus receptor and enhance CMV promoter activity in castration-resistant prostate cancer cells. Kasman L; Onicescu G; Voelkel-Johnson C Prostate Cancer; 2012; 2012():137163. PubMed ID: 22288017 [TBL] [Abstract][Full Text] [Related]
57. Pharmacological Efficacy of Repurposing Drugs in the Treatment of Prostate Cancer. Lourenço T; Vale N Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835564 [TBL] [Abstract][Full Text] [Related]
58. The evidence for repurposing anti-epileptic drugs to target cancer. Aroosa M; Malik JA; Ahmed S; Bender O; Ahemad N; Anwar S Mol Biol Rep; 2023 Sep; 50(9):7667-7680. PubMed ID: 37418080 [TBL] [Abstract][Full Text] [Related]
59. The Potential Role of Epigenetic Drugs in the Treatment of Anxiety Disorders. Peedicayil J Neuropsychiatr Dis Treat; 2020; 16():597-606. PubMed ID: 32184601 [TBL] [Abstract][Full Text] [Related]
60. Repurposing of the Antiepileptic Drug Levetiracetam to Restrain Neuroendocrine Prostate Cancer and Inhibit Mast Cell Support to Adenocarcinoma. Sulsenti R; Frossi B; Bongiovanni L; Cancila V; Ostano P; Fischetti I; Enriquez C; Guana F; Chiorino G; Tripodo C; Pucillo CE; Colombo MP; Jachetti E Front Immunol; 2021; 12():622001. PubMed ID: 33737929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]