These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 2197933)
1. Mechanisms for nonuniform propagation along excitable cables. Rinzel J Ann N Y Acad Sci; 1990; 591():51-61. PubMed ID: 2197933 [TBL] [Abstract][Full Text] [Related]
2. Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Dominguez G; Fozzard HA Am J Physiol; 1979 Sep; 237(3):C119-24. PubMed ID: 474741 [TBL] [Abstract][Full Text] [Related]
3. Hysteresis phenomena in excitable cardiac tissues. Lorente P; Davidenko J Ann N Y Acad Sci; 1990; 591():109-27. PubMed ID: 2375573 [No Abstract] [Full Text] [Related]
4. Supernormal conduction in cardiac tissue promotes concordant alternans and action potential bunching. Echebarria B; Röder G; Engel H; Davidsen J; Bär M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):040902. PubMed ID: 21599107 [TBL] [Abstract][Full Text] [Related]
5. Conduction in bundles of demyelinated nerve fibers: computer simulation. Reutskiy S; Rossoni E; Tirozzi B Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655 [TBL] [Abstract][Full Text] [Related]
6. A simple model of delay, block and one way conduction in Purkinje fibers. Miller RN J Math Biol; 1979 May; 7(4):385-98. PubMed ID: 469416 [TBL] [Abstract][Full Text] [Related]
7. Experimental study of the conducted action potential in cardiac Purkinje strands. Walton MK; Fozzard HA Biophys J; 1983 Oct; 44(1):1-8. PubMed ID: 6626674 [TBL] [Abstract][Full Text] [Related]
8. Asymptotic properties of mathematical models of excitability. Biktasheva IV; Simitev RD; Suckley R; Biktashev VN Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1283-98. PubMed ID: 16608708 [TBL] [Abstract][Full Text] [Related]
9. Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Chialvo DR; Michaels DC; Jalife J Circ Res; 1990 Feb; 66(2):525-45. PubMed ID: 2297816 [TBL] [Abstract][Full Text] [Related]
10. Electrical uncoupling and impulse propagation in isolated sheep Purkinje fibers. Jalife J; Sicouri S; Delmar M; Michaels DC Am J Physiol; 1989 Jul; 257(1 Pt 2):H179-89. PubMed ID: 2750935 [TBL] [Abstract][Full Text] [Related]
11. Simulation of action potential propagation in an inhomogeneous sheet of coupled excitable cells. Joyner RW; Ramón F; Morre JW Circ Res; 1975 May; 36(5):654-61. PubMed ID: 1122575 [TBL] [Abstract][Full Text] [Related]
13. A model of slow conduction in bullfrog atrial trabeculae. Murphey CR; Clark JW; Giles WR Math Biosci; 1991 Sep; 106(1):85-109. PubMed ID: 1802176 [TBL] [Abstract][Full Text] [Related]
15. Reflection after delayed excitation in a computer model of a single fiber. Cabo C; Barr RC Circ Res; 1992 Aug; 71(2):260-70. PubMed ID: 1628385 [TBL] [Abstract][Full Text] [Related]
16. Effect of geometrical irregularities on propagation delay in axonal trees. Manor Y; Koch C; Segev I Biophys J; 1991 Dec; 60(6):1424-37. PubMed ID: 1777567 [TBL] [Abstract][Full Text] [Related]
17. Role of gap junctions in the propagation of the cardiac action potential. Rohr S Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351 [TBL] [Abstract][Full Text] [Related]
18. Cable analysis in quiescent and active sheep Purkinje fibres. Pressler ML J Physiol; 1984 Jul; 352():739-57. PubMed ID: 6747906 [TBL] [Abstract][Full Text] [Related]
19. A collocation--Galerkin finite element model of cardiac action potential propagation. Rogers JM; McCulloch AD IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of circus movement re-entry across canine Purkinje fibre-muscle junctions. Gilmour RF; Watanabe M J Physiol; 1994 May; 476(3):473-85. PubMed ID: 8057255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]