These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 21979377)

  • 1. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoset polyester droplet-based microfluidic devices for high frequency generation.
    Kim JY; deMello AJ; Chang SI; Hong J; O'Hare D
    Lab Chip; 2011 Dec; 11(23):4108-12. PubMed ID: 21979428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation.
    Madadi H; Mohammadi M; Casals-Terré J; López RC
    Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
    Fiorini GS; Yim M; Jeffries GD; Schiro PG; Mutch SA; Lorenz RM; Chiu DT
    Lab Chip; 2007 Jul; 7(7):923-6. PubMed ID: 17594014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping.
    Piccin E; Coltro WK; Fracassi da Silva JA; Neto SC; Mazo LH; Carrilho E
    J Chromatogr A; 2007 Nov; 1173(1-2):151-8. PubMed ID: 17964580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of polydimethylsiloxane microfluidics using SU-8 molds.
    Zaouk R; Park BY; Madou MJ
    Methods Mol Biol; 2006; 321():17-21. PubMed ID: 16508061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New family of fluorinated polymer chips for droplet and organic solvent microfluidics.
    Begolo S; Colas G; Viovy JL; Malaquin L
    Lab Chip; 2011 Feb; 11(3):508-12. PubMed ID: 21113543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.