These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21979428)

  • 1. Thermoset polyester droplet-based microfluidic devices for high frequency generation.
    Kim JY; deMello AJ; Chang SI; Hong J; O'Hare D
    Lab Chip; 2011 Dec; 11(23):4108-12. PubMed ID: 21979428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
    Fiorini GS; Yim M; Jeffries GD; Schiro PG; Mutch SA; Lorenz RM; Chiu DT
    Lab Chip; 2007 Jul; 7(7):923-6. PubMed ID: 17594014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid prototyping of thermoset polyester microfluidic devices.
    Fiorini GS; Lorenz RM; Kuo JS; Chiu DT
    Anal Chem; 2004 Aug; 76(16):4697-704. PubMed ID: 15307779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry.
    Vickers JA; Dressen BM; Weston MC; Boonsong K; Chailapakul O; Cropek DM; Henry CS
    Electrophoresis; 2007 Apr; 28(7):1123-9. PubMed ID: 17340646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract.
    Wu N; Zhu Y; Brown S; Oakeshott J; Peat TS; Surjadi R; Easton C; Leech PW; Sexton BA
    Lab Chip; 2009 Dec; 9(23):3391-8. PubMed ID: 19904406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallelized edge-based droplet generation (EDGE) devices.
    van Dijke K; Veldhuis G; Schroën K; Boom R
    Lab Chip; 2009 Oct; 9(19):2824-30. PubMed ID: 19967120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-channel atom-transfer radical polymerization of thermoset polyester microfluidic devices for bioanalytical applications.
    Pan T; Fiorini GS; Chiu DT; Woolley AT
    Electrophoresis; 2007 Aug; 28(16):2904-11. PubMed ID: 17640094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.