These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 21979513)
1. Light scattering by optically soft large particles of arbitrary shape. Malinka AV J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2086-90. PubMed ID: 21979513 [TBL] [Abstract][Full Text] [Related]
2. Scattering by two rayleigh-debye spheres. Olaof GO Appl Opt; 1970 Feb; 9(2):429-37. PubMed ID: 20076206 [TBL] [Abstract][Full Text] [Related]
3. The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. Johnsen S; Widder EA J Theor Biol; 1999 Jul; 199(2):181-98. PubMed ID: 10395813 [TBL] [Abstract][Full Text] [Related]
4. Rayleigh-Gans-Debye applicability to scattering by nonspherical particles. Barber PW; Wang DS Appl Opt; 1978 Mar; 17(5):797-803. PubMed ID: 20197875 [TBL] [Abstract][Full Text] [Related]
5. Analytical inversions in remote sensing of particle size distributions. 3: Angular and spectral scattering in the Rayleigh-Gans-Born approximation for particles of various geometrical shapes. Fymat AL Appl Opt; 1979 Jan; 18(1):126-30. PubMed ID: 20208673 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. Kotlarchyk M; Chen SH; Asano S Appl Opt; 1979 Jul; 18(14):2470-9. PubMed ID: 20212685 [TBL] [Abstract][Full Text] [Related]
7. Approximation of the Fraunhofer diffraction peak, produced by particles of arbitrary shape. Malinka AV Opt Lett; 2010 Oct; 35(20):3411-3. PubMed ID: 20967083 [TBL] [Abstract][Full Text] [Related]
8. Scattering of intersecting spherical particles in the Rayleigh-Gans approximation. Eliçabe GE J Colloid Interface Sci; 2011 May; 357(1):82-7. PubMed ID: 21353229 [TBL] [Abstract][Full Text] [Related]
9. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method. Klett JD; Sutherland RA Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415 [TBL] [Abstract][Full Text] [Related]
10. General solution to the inverse near-forward-scattering particle-sizing problem in multiple-scattering environments: theory. Hirleman ED Appl Opt; 1991 Nov; 30(33):4832-8. PubMed ID: 20717286 [TBL] [Abstract][Full Text] [Related]
11. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory. Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547 [TBL] [Abstract][Full Text] [Related]
12. Elastic light scattering from nanoparticles by monochromatic vacuum-ultraviolet radiation. Shu J; Wilson KR; Ahmed M; Leone SR; Graf C; Rühl E J Chem Phys; 2006 Jan; 124(3):034707. PubMed ID: 16438600 [TBL] [Abstract][Full Text] [Related]
13. Rayleigh-gans-born light scattering by ensembles of randomly oriented anisotropic particles. Turner L Appl Opt; 1973 May; 12(5):1085-90. PubMed ID: 20125471 [TBL] [Abstract][Full Text] [Related]
14. The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: experimental observations. Jen SH; Gonella G; Dai HL J Phys Chem A; 2009 Apr; 113(16):4758-62. PubMed ID: 19278215 [TBL] [Abstract][Full Text] [Related]
17. Colors of transparent submicron suspensions on approaching the Rayleigh regime. Magatti D; Ferri F; Ragazzi P; Pigazzini MC; Averchi A; Di Trapani P Appl Opt; 2012 Apr; 51(12):2183-91. PubMed ID: 22534932 [TBL] [Abstract][Full Text] [Related]
18. Differential light scattering photometer for rapid analysis of single particles in flow. Bartholdi M; Salzman GC; Hiebert RD; Kerker M Appl Opt; 1980 May; 19(10):1573-81. PubMed ID: 20221079 [TBL] [Abstract][Full Text] [Related]
19. Particle sizing by means of the forward scattering lobe. Hodkinson JR Appl Opt; 1966 May; 5(5):839-44. PubMed ID: 20048958 [TBL] [Abstract][Full Text] [Related]