These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21979567)
21. Pressure-Driven Micro-Casting for Electrode Fabrication and Its Applications in Wear Grain Detections. Cheng E; Xing B; Li S; Yu C; Li J; Wei C; Cheng C Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717693 [TBL] [Abstract][Full Text] [Related]
22. Design, Fabrication, Simulation and Characterization of a Novel Dual-Sided Microelectrode Array for Deep Brain Recording and Stimulation. Zhao Z; Gong R; Huang H; Wang J Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314356 [TBL] [Abstract][Full Text] [Related]
23. Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip. Kundu A; McCoy L; Azim N; Nguyen H; Didier CM; Ausaf T; Sharma AD; Curley JL; Moore MJ; Rajaraman S ACS Biomater Sci Eng; 2021 Jul; 7(7):3018-3029. PubMed ID: 34275292 [TBL] [Abstract][Full Text] [Related]
24. Precision EDM of Micron-Scale Diameter Hole Array Using in-Process Wire Electro-Discharge Grinding High-Aspect-Ratio Microelectrodes. Zou Z; Guo Z; Huang Q; Yue T; Liu J; Chen X Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375306 [TBL] [Abstract][Full Text] [Related]
25. A new chronic neural probe with electroplated iridium oxide microelectrodes. Han M; McCreery DB Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4220-1. PubMed ID: 19163643 [TBL] [Abstract][Full Text] [Related]
26. Novel multi-sided, microelectrode arrays for implantable neural applications. Seymour JP; Langhals NB; Anderson DJ; Kipke DR Biomed Microdevices; 2011 Jun; 13(3):441-51. PubMed ID: 21301965 [TBL] [Abstract][Full Text] [Related]
27. A high-yield microassembly structure for three-dimensional microelectrode arrays. Bai Q; Wise KD; Anderson DJ IEEE Trans Biomed Eng; 2000 Mar; 47(3):281-9. PubMed ID: 10743769 [TBL] [Abstract][Full Text] [Related]
28. Coupled Eulerian-Lagrangian model prediction of neural tissue strain during microelectrode insertion. O'Sullivan KP; Coats B J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39074496 [No Abstract] [Full Text] [Related]
29. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. Heim M; Yvert B; Kuhn A J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264 [TBL] [Abstract][Full Text] [Related]
30. Automated assembly of high-density carbon fiber electrode arrays for single unit electrophysiological recordings. Dong T; Chen L; Patel PR; Richie JM; Chestek CA; Shih AJ J Neural Eng; 2023 May; 20(3):. PubMed ID: 37141883 [No Abstract] [Full Text] [Related]
31. Development of flexible microelectrode arrays for recording cortical surface field potentials. Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387 [TBL] [Abstract][Full Text] [Related]
32. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. Prasad A; Sanchez JC J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134 [TBL] [Abstract][Full Text] [Related]
33. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638 [TBL] [Abstract][Full Text] [Related]
34. Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation. Blau A; Ziegler C; Heyer M; Endres F; Schwitzgebel G; Matthies T; Stieglitz T; Meyer JU; Göpel W Biosens Bioelectron; 1997; 12(9-10):883-92. PubMed ID: 9451781 [TBL] [Abstract][Full Text] [Related]
35. High density penetrating electrode arrays for autonomic nerves. Burns J; Yee-Hsee Hsieh ; Mueller A; Chevallier J; Sriram TS; Lewis SJ; Chew D; Achyuta A; Fiering J Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2802-2805. PubMed ID: 28268900 [TBL] [Abstract][Full Text] [Related]
36. Compositional and morphological properties of platinum-iridium electrodeposited on carbon fiber microelectrodes. Della Valle E; Welle EJ; Chestek CA; Weiland JD J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34428753 [No Abstract] [Full Text] [Related]
37. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays. Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400 [TBL] [Abstract][Full Text] [Related]
38. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176 [TBL] [Abstract][Full Text] [Related]
39. Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster. Zhong C; Zhang Y; He W; Wei P; Lu Y; Zhu Y; Liu L; Wang L J Neurosci Methods; 2014 Jan; 222():218-29. PubMed ID: 24286699 [TBL] [Abstract][Full Text] [Related]
40. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording. Kim JM; Im C; Lee WR Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]