BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21979580)

  • 1. Plant extracellular ATP signalling: new insight from proteomics.
    Chivasa S; Slabas AR
    Mol Biosyst; 2012 Feb; 8(2):445-52. PubMed ID: 21979580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis.
    Choi J; Tanaka K; Liang Y; Cao Y; Lee SY; Stacey G
    Biochem J; 2014 Nov; 463(3):429-37. PubMed ID: 25301072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels.
    Demidchik V; Shang Z; Shin R; Thompson E; Rubio L; Laohavisit A; Mortimer JC; Chivasa S; Slabas AR; Glover BJ; Schachtman DP; Shabala SN; Davies JM
    Plant J; 2009 Jun; 58(6):903-13. PubMed ID: 19220789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular ATP is a central signaling molecule in plant stress responses.
    Cao Y; Tanaka K; Nguyen CT; Stacey G
    Curr Opin Plant Biol; 2014 Aug; 20():82-7. PubMed ID: 24865948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Arabidopsis extracellular ATP binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C-LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity.
    Smith SJ; Goodman H; Kroon JTM; Brown AP; Simon WJ; Chivasa S
    Plant J; 2021 Jun; 106(5):1387-1400. PubMed ID: 33735457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular ATP: a modulator of cell death and pathogen defense in plants.
    Chivasa S; Tomé DF; Murphy AM; Hamilton JM; Lindsey K; Carr JP
    Plant Signal Behav; 2009 Nov; 4(11):1078-80. PubMed ID: 20009563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A central integrator of transcription networks in plant stress and energy signalling.
    Baena-González E; Rolland F; Thevelein JM; Sheen J
    Nature; 2007 Aug; 448(7156):938-42. PubMed ID: 17671505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network.
    Castaings L; Marchive C; Meyer C; Krapp A
    J Exp Bot; 2011 Feb; 62(4):1391-7. PubMed ID: 21118821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome.
    Chivasa S; Simon WJ; Murphy AM; Lindsey K; Carr JP; Slabas AR
    Proteomics; 2010 Jan; 10(2):235-44. PubMed ID: 19899079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABA-dependent and -independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach.
    Alvarez S; Hicks LM; Pandey S
    J Proteome Res; 2011 Jul; 10(7):3107-22. PubMed ID: 21545083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.
    Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK
    Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular ATP targets Arabidopsis RIBONUCLEASE 1 to suppress mycotoxin stress-induced cell death.
    Goodman HL; Kroon JTM; Tomé DFA; Hamilton JMU; Alqarni AO; Chivasa S
    New Phytol; 2022 Aug; 235(4):1531-1542. PubMed ID: 35524456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomics in Arabidopsis: moving from empirical to predictive science.
    Peck SC
    J Exp Bot; 2006; 57(7):1523-7. PubMed ID: 16531460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures.
    Chivasa S; Hamilton JM; Pringle RS; Ndimba BK; Simon WJ; Lindsey K; Slabas AR
    J Exp Bot; 2006; 57(7):1553-62. PubMed ID: 16547123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of defense response of wildtype Arabidopsis thaliana and plants with impaired NO- homeostasis.
    Holzmeister C; Fröhlich A; Sarioglu H; Bauer N; Durner J; Lindermayr C
    Proteomics; 2011 May; 11(9):1664-83. PubMed ID: 21462345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins.
    Smith SJ; Kroon JT; Simon WJ; Slabas AR; Chivasa S
    Mol Cell Proteomics; 2015 Jun; 14(6):1556-68. PubMed ID: 25862728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress.
    Shi S; Chen W; Sun W
    Proteomics; 2011 Dec; 11(24):4712-25. PubMed ID: 22002954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants.
    Jing HC; Hebeler R; Oeljeklaus S; Sitek B; Stühler K; Meyer HE; Sturre MJ; Hille J; Warscheid B; Dijkwel PP
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():85-98. PubMed ID: 18721314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator.
    Chivasa S; Tomé DF; Hamilton JM; Slabas AR
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.003905. PubMed ID: 21156838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways.
    Zhang Z; Feechan A; Pedersen C; Newman MA; Qiu JL; Olesen KL; Thordal-Christensen H
    Plant J; 2007 Jan; 49(2):302-12. PubMed ID: 17241452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.