BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21979748)

  • 1. Artemin as an efficient molecular chaperone.
    Shahangian SS; Rasti B; Sajedi RH; Khodarahmi R; Taghdir M; Ranjbar B
    Protein J; 2011 Dec; 30(8):549-57. PubMed ID: 21979748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of artemin on structural transition of β-lactoglobulin.
    Hassani L; Sajedi RH
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():24-8. PubMed ID: 23291197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time monitoring of artemin in vivo chaperone activity using luciferase as an intracellular reporter.
    Takalloo Z; Sajedi RH; Hosseinkhani S; Asghari SM
    Arch Biochem Biophys; 2016 Nov; 610():33-40. PubMed ID: 27693039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-dependent conformational changes of artemin: Effects of heat and oxidant.
    Takalloo Z; Ardakani ZA; Maroufi B; Shahangian SS; Sajedi RH
    PLoS One; 2020; 15(11):e0242206. PubMed ID: 33196673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females.
    King AM; Toxopeus J; MacRae TH
    J Exp Biol; 2014 May; 217(Pt 10):1719-24. PubMed ID: 24526727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the soluble expression of aequorin in Escherichia coli using the chaperone-based approach by co-expression with artemin.
    Khosrowabadi E; Takalloo Z; Sajedi RH; Khajeh K
    Prep Biochem Biotechnol; 2018; 48(6):483-489. PubMed ID: 29958068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues.
    Hu Y; Bojikova-Fournier S; King AM; MacRae TH
    Cell Stress Chaperones; 2011 Mar; 16(2):133-41. PubMed ID: 20878295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chaperones, stress resistance and development in Artemia franciscana.
    MacRae TH
    Semin Cell Dev Biol; 2003 Oct; 14(5):251-8. PubMed ID: 14986854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing heat and oxidation induced conformational changes of molecular chaperone artemin by excitation-emission fluorescence spectroscopy.
    Takalloo Z; Masroor MJ; Mani-Varnosfaderani A; Maroufi B; H Sajedi R
    J Photochem Photobiol B; 2020 Oct; 211():112013. PubMed ID: 32919176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity.
    Mosaddegh B; Takalloo Z; Sajedi RH; Shirin Shahangian S; Hassani L; Rasti B
    Cell Stress Chaperones; 2018 Jul; 23(4):685-693. PubMed ID: 29429019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity.
    Warner AH; Brunet RT; MacRae TH; Clegg JS
    Arch Biochem Biophys; 2004 Apr; 424(2):189-200. PubMed ID: 15047191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artemin protects cells and proteins against oxidative and salt stress.
    Takalloo Z; Sajedi RH; Hosseinkhani S; Moazzenzade T
    Int J Biol Macromol; 2017 Feb; 95():618-624. PubMed ID: 27894826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress tolerance in diapausing embryos of Artemia franciscana is dependent on heat shock factor 1 (Hsf1).
    Tan J; MacRae TH
    PLoS One; 2018; 13(7):e0200153. PubMed ID: 29979776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of extra C-terminal segment and its effect on the function and structure of artemin.
    Shirzad F; Sajedi RH; Shahangian SS; Rasti B; Mosadegh B; Taghdir M; Hosseinkhani S
    Int J Biol Macromol; 2011 Oct; 49(3):311-6. PubMed ID: 21600915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause.
    Chen T; Villeneuve TS; Garant KA; Amons R; MacRae TH
    FEBS J; 2007 Feb; 274(4):1093-101. PubMed ID: 17257268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1).
    Tan J; MacRae TH
    Cell Stress Chaperones; 2019 Mar; 24(2):385-392. PubMed ID: 30701477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of artemin and ferritin from Artemia franciscana.
    Chen T; Amons R; Clegg JS; Warner AH; MacRae TH
    Eur J Biochem; 2003 Jan; 270(1):137-45. PubMed ID: 12492484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaperone activity of Cyp18 through hydrophobic condensation that enables rescue of transient misfolded molten globule intermediates.
    Moparthi SB; Fristedt R; Mishra R; Almstedt K; Karlsson M; Hammarström P; Carlsson U
    Biochemistry; 2010 Feb; 49(6):1137-45. PubMed ID: 20070121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia.
    Tanguay JA; Reyes RC; Clegg JS
    J Biosci; 2004 Dec; 29(4):489-501. PubMed ID: 15625404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana.
    Sun Y; Bojikova-Fournier S; MacRae TH
    FEBS J; 2006 Mar; 273(5):1020-34. PubMed ID: 16478475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.