BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21979817)

  • 1. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling.
    Civril F; Bennett M; Moldt M; Deimling T; Witte G; Schiesser S; Carell T; Hopfner KP
    EMBO Rep; 2011 Oct; 12(11):1127-34. PubMed ID: 21979817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into RNA recognition by RIG-I.
    Luo D; Ding SC; Vela A; Kohlway A; Lindenbach BD; Pyle AM
    Cell; 2011 Oct; 147(2):409-22. PubMed ID: 22000018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
    Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J
    Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.
    Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D
    BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA.
    Pippig DA; Hellmuth JC; Cui S; Kirchhofer A; Lammens K; Lammens A; Schmidt A; Rothenfusser S; Hopfner KP
    Nucleic Acids Res; 2009 Apr; 37(6):2014-25. PubMed ID: 19208642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling.
    Motz C; Schuhmann KM; Kirchhofer A; Moldt M; Witte G; Conzelmann KK; Hopfner KP
    Science; 2013 Feb; 339(6120):690-3. PubMed ID: 23328395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical studies of RIG-I antiviral signaling.
    Feng M; Ding Z; Xu L; Kong L; Wang W; Jiao S; Shi Z; Greene MI; Cong Y; Zhou Z
    Protein Cell; 2013 Feb; 4(2):142-54. PubMed ID: 23264040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I.
    Wang Y; Ludwig J; Schuberth C; Goldeck M; Schlee M; Li H; Juranek S; Sheng G; Micura R; Tuschl T; Hartmann G; Patel DJ
    Nat Struct Mol Biol; 2010 Jul; 17(7):781-7. PubMed ID: 20581823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA.
    Lässig C; Matheisl S; Sparrer KM; de Oliveira Mann CC; Moldt M; Patel JR; Goldeck M; Hartmann G; García-Sastre A; Hornung V; Conzelmann KK; Beckmann R; Hopfner KP
    Elife; 2015 Nov; 4():. PubMed ID: 26609812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5' triphosphate.
    Lu C; Ranjith-Kumar CT; Hao L; Kao CC; Li P
    Nucleic Acids Res; 2011 Mar; 39(4):1565-75. PubMed ID: 20961956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner.
    Peisley A; Wu B; Yao H; Walz T; Hur S
    Mol Cell; 2013 Sep; 51(5):573-83. PubMed ID: 23993742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5.
    Li X; Lu C; Stewart M; Xu H; Strong RK; Igumenova T; Li P
    Arch Biochem Biophys; 2009 Aug; 488(1):23-33. PubMed ID: 19531363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization.
    Devarkar SC; Schweibenz B; Wang C; Marcotrigiano J; Patel SS
    Mol Cell; 2018 Oct; 72(2):355-368.e4. PubMed ID: 30270105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA.
    Anchisi S; Guerra J; Garcin D
    mBio; 2015 Mar; 6(2):e02349. PubMed ID: 25736886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.
    Myong S; Cui S; Cornish PV; Kirchhofer A; Gack MU; Jung JU; Hopfner KP; Ha T
    Science; 2009 Feb; 323(5917):1070-4. PubMed ID: 19119185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP.
    Högbom M; Collins R; van den Berg S; Jenvert RM; Karlberg T; Kotenyova T; Flores A; Karlsson Hedestam GB; Schiavone LH
    J Mol Biol; 2007 Sep; 372(1):150-9. PubMed ID: 17631897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Suv3 protein reveals unique features among SF2 helicases.
    Jedrzejczak R; Wang J; Dauter M; Szczesny RJ; Stepien PP; Dauter Z
    Acta Crystallogr D Biol Crystallogr; 2011 Nov; 67(Pt 11):988-96. PubMed ID: 22101826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain.
    Lu C; Xu H; Ranjith-Kumar CT; Brooks MT; Hou TY; Hu F; Herr AB; Strong RK; Kao CC; Li P
    Structure; 2010 Aug; 18(8):1032-43. PubMed ID: 20637642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal and solution structure of the human RIG-I SF2 domain.
    Deimling T; Cui S; Lammens K; Hopfner KP; Witte G
    Acta Crystallogr F Struct Biol Commun; 2014 Aug; 70(Pt 8):1027-31. PubMed ID: 25084375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.