These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 21979823)
1. Screening of peptides bound to breast cancer stem cell specific surface marker CD44 by phage display. Park HY; Lee KJ; Lee SJ; Yoon MY Mol Biotechnol; 2012 Jul; 51(3):212-20. PubMed ID: 21979823 [TBL] [Abstract][Full Text] [Related]
2. In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker. Ababneh N; Alshaer W; Allozi O; Mahafzah A; El-Khateeb M; Hillaireau H; Noiray M; Fattal E; Ismail S Nucleic Acid Ther; 2013 Dec; 23(6):401-7. PubMed ID: 24171482 [TBL] [Abstract][Full Text] [Related]
3. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Mine T; Matsueda S; Li Y; Tokumitsu H; Gao H; Danes C; Wong KK; Wang X; Ferrone S; Ioannides CG Cancer Immunol Immunother; 2009 Aug; 58(8):1185-94. PubMed ID: 19048252 [TBL] [Abstract][Full Text] [Related]
4. Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Donnenberg VS; Donnenberg AD; Zimmerlin L; Landreneau RJ; Bhargava R; Wetzel RA; Basse P; Brufsky AM Cytometry B Clin Cytom; 2010 Sep; 78(5):287-301. PubMed ID: 20533389 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Wang C; Xie J; Guo J; Manning HC; Gore JC; Guo N Oncol Rep; 2012 Oct; 28(4):1301-8. PubMed ID: 22895640 [TBL] [Abstract][Full Text] [Related]
6. A Comparison Between Cell, Protein and Peptide-Based Approaches for Selection of Nanobodies Against CD44 from a Synthetic Library. Kavousipour S; Mokarram P; Gargari SLM; Mostafavi-Pour Z; Barazesh M; Ramezani A; Ashktorab H; Mohammadi S; Ghavami S Protein Pept Lett; 2018; 25(6):580-588. PubMed ID: 29848261 [TBL] [Abstract][Full Text] [Related]
7. The Cell Surface Receptor CD44: NMR-Based Characterization of Putative Ligands. Baggio C; Barile E; Di Sorbo G; Kipps TJ; Pellecchia M ChemMedChem; 2016 May; 11(10):1097-106. PubMed ID: 27144715 [TBL] [Abstract][Full Text] [Related]
8. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Lin WM; Karsten U; Goletz S; Cheng RC; Cao Y Int J Exp Pathol; 2011 Apr; 92(2):97-105. PubMed ID: 21070402 [TBL] [Abstract][Full Text] [Related]
9. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. Calcagno AM; Salcido CD; Gillet JP; Wu CP; Fostel JM; Mumau MD; Gottesman MM; Varticovski L; Ambudkar SV J Natl Cancer Inst; 2010 Nov; 102(21):1637-52. PubMed ID: 20935265 [TBL] [Abstract][Full Text] [Related]
10. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells. Tan S; Yamashita A; Gao SJ; Kurisawa M Acta Biomater; 2019 Aug; 94():320-329. PubMed ID: 31125725 [TBL] [Abstract][Full Text] [Related]
11. Effect of CD44 binding peptide conjugated to an engineered inert matrix on maintenance of breast cancer stem cells and tumorsphere formation. Yang X; Sarvestani SK; Moeinzadeh S; He X; Jabbari E PLoS One; 2013; 8(3):e59147. PubMed ID: 23527117 [TBL] [Abstract][Full Text] [Related]
13. Co-expression of stem cell markers ALDH1 and CD44 in non-malignant and neoplastic lesions of the breast. DA Cruz Paula A; Marques O; Rosa AM; DE Fátima Faria M; Rêma A; Lopes C Anticancer Res; 2014 Mar; 34(3):1427-34. PubMed ID: 24596390 [TBL] [Abstract][Full Text] [Related]
14. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis. Leth-Larsen R; Terp MG; Christensen AG; Elias D; Kühlwein T; Jensen ON; Petersen OW; Ditzel HJ Mol Med; 2012 Sep; 18(1):1109-21. PubMed ID: 22692575 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Li W; Ma H; Zhang J; Zhu L; Wang C; Yang Y Sci Rep; 2017 Oct; 7(1):13856. PubMed ID: 29062075 [TBL] [Abstract][Full Text] [Related]
16. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. Hwang-Verslues WW; Kuo WH; Chang PH; Pan CC; Wang HH; Tsai ST; Jeng YM; Shew JY; Kung JT; Chen CH; Lee EY; Chang KJ; Lee WH PLoS One; 2009 Dec; 4(12):e8377. PubMed ID: 20027313 [TBL] [Abstract][Full Text] [Related]
17. CD133+, CD166+CD44+, and CD24+CD44+ phenotypes fail to reliably identify cell populations with cancer stem cell functional features in established human colorectal cancer cell lines. Muraro MG; Mele V; Däster S; Han J; Heberer M; Cesare Spagnoli G; Iezzi G Stem Cells Transl Med; 2012 Aug; 1(8):592-603. PubMed ID: 23197865 [TBL] [Abstract][Full Text] [Related]
18. Aspartyl Aminopeptidase Suppresses Proliferation, Invasion, and Stemness of Breast Cancer Cells via Targeting CD44. Geng N; Zhang W; Li Y; Li F Anat Rec (Hoboken); 2019 Dec; 302(12):2178-2185. PubMed ID: 31228326 [TBL] [Abstract][Full Text] [Related]
19. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. Storci G; Sansone P; Mari S; D'Uva G; Tavolari S; Guarnieri T; Taffurelli M; Ceccarelli C; Santini D; Chieco P; Marcu KB; Bonafè M J Cell Physiol; 2010 Nov; 225(3):682-91. PubMed ID: 20509143 [TBL] [Abstract][Full Text] [Related]