BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21980270)

  • 1. A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus.
    Halnes G; Augustinaite S; Heggelund P; Einevoll GT; Migliore M
    PLoS Comput Biol; 2011 Sep; 7(9):e1002160. PubMed ID: 21980270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burst firing in identified rat geniculate interneurons.
    Zhu JJ; Uhlrich DJ; Lytton WW
    Neuroscience; 1999; 91(4):1445-60. PubMed ID: 10391450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active dendritic conductances dynamically regulate GABA release from thalamic interneurons.
    Acuna-Goycolea C; Brenowitz SD; Regehr WG
    Neuron; 2008 Feb; 57(3):420-31. PubMed ID: 18255034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells.
    Heiberg T; Hagen E; Halnes G; Einevoll GT
    PLoS Comput Biol; 2016 May; 12(5):e1004929. PubMed ID: 27203421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus.
    Pape HC; McCormick DA
    Neuroscience; 1995 Oct; 68(4):1105-25. PubMed ID: 8544986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus.
    Allken V; Chepkoech JL; Einevoll GT; Halnes G
    PLoS One; 2014; 9(9):e107780. PubMed ID: 25268996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological and morphological properties of interneurones in the rat dorsal lateral geniculate nucleus in vitro.
    Williams SR; Turner JP; Anderson CM; Crunelli V
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):129-47. PubMed ID: 8745283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus.
    Zhan XJ; Cox CL; Rinzel J; Sherman SM
    J Neurophysiol; 1999 May; 81(5):2360-73. PubMed ID: 10322072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of a hyperpolarization-activated cation current in interneurons in the rat lateral geniculate nucleus.
    Zhu JJ; Uhlrich DJ; Lytton WW
    Neuroscience; 1999; 92(2):445-57. PubMed ID: 10408596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backpropagation of the delta oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons.
    Emri Z; Antal K; Tóth TI; Cope DW; Crunelli V
    Neuroscience; 2000; 98(1):111-27. PubMed ID: 10858617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thalamic burst firing propensity: a comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew.
    Wei H; Bonjean M; Petry HM; Sejnowski TJ; Bickford ME
    J Neurosci; 2011 Nov; 31(47):17287-99. PubMed ID: 22114295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike and burst coding in thalamocortical relay cells.
    Zeldenrust F; Chameau P; Wadman WJ
    PLoS Comput Biol; 2018 Feb; 14(2):e1005960. PubMed ID: 29432418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types.
    Perreault MC; Raastad M
    J Physiol; 2006 Nov; 577(Pt 1):205-20. PubMed ID: 16959860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons.
    Sun QQ
    BMC Neurosci; 2009 Oct; 10():131. PubMed ID: 19874589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.
    Augustinaite S; Heggelund P
    Neuroscience; 2018 Aug; 384():76-86. PubMed ID: 29802882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual response properties of burst and tonic firing in the mouse dorsal lateral geniculate nucleus.
    Grubb MS; Thompson ID
    J Neurophysiol; 2005 Jun; 93(6):3224-47. PubMed ID: 15601741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model.
    Smith GD; Cox CL; Sherman SM; Rinzel J
    J Neurophysiol; 2000 Jan; 83(1):588-610. PubMed ID: 10634897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells.
    Martínez-Cañada P; Mobarhan MH; Halnes G; Fyhn M; Morillas C; Pelayo F; Einevoll GT
    PLoS Comput Biol; 2018 Jan; 14(1):e1005930. PubMed ID: 29377888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance.
    Lu SM; Guido W; Sherman SM
    J Neurophysiol; 1992 Dec; 68(6):2185-98. PubMed ID: 1337104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.