These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21980273)

  • 1. The effect of heterogeneity on invasion in spatial epidemics: from theory to experimental evidence in a model system.
    Neri FM; Bates A; Füchtbauer WS; Pérez-Reche FJ; Taraskin SN; Otten W; Bailey DJ; Gilligan CA
    PLoS Comput Biol; 2011 Sep; 7(9):e1002174. PubMed ID: 21980273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Percolation-based risk index for pathogen invasion: application to soilborne disease in propagation systems.
    Poggi S; Neri FM; Deytieux V; Bates A; Otten W; Gilligan CA; Bailey DJ
    Phytopathology; 2013 Oct; 103(10):1012-9. PubMed ID: 23819548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host growth can cause invasive spread of crops by soilborne pathogens.
    Leclerc M; Doré T; Gilligan CA; Lucas P; Filipe JA
    PLoS One; 2013; 8(5):e63003. PubMed ID: 23667560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of percolation theory to fungal spread with synergy.
    Ludlam JJ; Gibson GJ; Otten W; Gilligan CA
    J R Soc Interface; 2012 May; 9(70):949-56. PubMed ID: 22048947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity in susceptible-infected-removed (SIR) epidemics on lattices.
    Neri FM; Pérez-Reche FJ; Taraskin SN; Gilligan CA
    J R Soc Interface; 2011 Feb; 8(55):201-9. PubMed ID: 20630880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.
    Bakuli A; Klawonn F; Karch A; Mikolajczyk R
    Theor Biol Med Model; 2017 Dec; 14(1):26. PubMed ID: 29237462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supervised learning and prediction of spatial epidemics.
    Pokharel G; Deardon R
    Spat Spatiotemporal Epidemiol; 2014 Oct; 11():59-77. PubMed ID: 25457597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series.
    Li LM; Grassly NC; Fraser C
    Mol Biol Evol; 2017 Nov; 34(11):2982-2995. PubMed ID: 28981709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When and why direct transmission models can be used for environmentally persistent pathogens.
    Benson L; Davidson RS; Green DM; Hoyle A; Hutchings MR; Marion G
    PLoS Comput Biol; 2021 Dec; 17(12):e1009652. PubMed ID: 34851954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data.
    Morelli MJ; Thébaud G; Chadœuf J; King DP; Haydon DT; Soubeyrand S
    PLoS Comput Biol; 2012; 8(11):e1002768. PubMed ID: 23166481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of invasion from the early stage of an epidemic.
    Pérez-Reche FJ; Neri FM; Taraskin SN; Gilligan CA
    J R Soc Interface; 2012 Sep; 9(74):2085-96. PubMed ID: 22513723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics.
    Kamp C
    PLoS Comput Biol; 2010 Nov; 6(11):e1000984. PubMed ID: 21124951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birth/birth-death processes and their computable transition probabilities with biological applications.
    Ho LST; Xu J; Crawford FW; Minin VN; Suchard MA
    J Math Biol; 2018 Mar; 76(4):911-944. PubMed ID: 28741177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations.
    Clay PA; Duffy MA; Rudolf VHW
    Proc Biol Sci; 2020 Mar; 287(1922):20200046. PubMed ID: 32126961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs.
    Otten W; Bailey DJ; Gilligan CA
    New Phytol; 2004 Jul; 163(1):125-132. PubMed ID: 33873783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases.
    Leclerc M; Doré T; Gilligan CA; Lucas P; Filipe JA
    PLoS One; 2014; 9(1):e86568. PubMed ID: 24466153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial monitoring and prediction of epidemic outbreaks.
    Zamiri A; Yazdi HS; Goli SA
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):735-44. PubMed ID: 25122846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network analyses to quantify effects of host movement in multilevel disease transmission models using foot and mouth disease in Cameroon as a case study.
    Pomeroy LW; Kim H; Xiao N; Moritz M; Garabed R
    PLoS Comput Biol; 2019 Aug; 15(8):e1007184. PubMed ID: 31465448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influential disease foci in epidemics and underlying mechanisms: a field experiment and simulations.
    Estep LK; Sackett KE; Mundt CC
    Ecol Appl; 2014; 24(7):1854-62. PubMed ID: 29210243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network.
    Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA
    J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.