These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 21980363)
1. Quantitative analysis of the effect of cancer invasiveness and collagen concentration on 3D matrix remodeling. Harjanto D; Maffei JS; Zaman MH PLoS One; 2011; 6(9):e24891. PubMed ID: 21980363 [TBL] [Abstract][Full Text] [Related]
2. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Sapudom J; Rubner S; Martin S; Kurth T; Riedel S; Mierke CT; Pompe T Biomaterials; 2015 Jun; 52():367-75. PubMed ID: 25818443 [TBL] [Abstract][Full Text] [Related]
7. Modeling extracellular matrix reorganization in 3D environments. Harjanto D; Zaman MH PLoS One; 2013; 8(1):e52509. PubMed ID: 23341900 [TBL] [Abstract][Full Text] [Related]
8. Force-induced fibronectin assembly and matrix remodeling in a 3D microtissue model of tissue morphogenesis. Legant WR; Chen CS; Vogel V Integr Biol (Camb); 2012 Oct; 4(10):1164-74. PubMed ID: 22961409 [TBL] [Abstract][Full Text] [Related]
9. Fibril bending stiffness of 3D collagen matrices instructs spreading and clustering of invasive and non-invasive breast cancer cells. Sapudom J; Kalbitzer L; Wu X; Martin S; Kroy K; Pompe T Biomaterials; 2019 Feb; 193():47-57. PubMed ID: 30554026 [TBL] [Abstract][Full Text] [Related]
10. Fiber stiffness, pore size and adhesion control migratory phenotype of MDA-MB-231 cells in collagen gels. Geiger F; Rüdiger D; Zahler S; Engelke H PLoS One; 2019; 14(11):e0225215. PubMed ID: 31721794 [TBL] [Abstract][Full Text] [Related]
11. Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Lang NR; Skodzek K; Hurst S; Mainka A; Steinwachs J; Schneider J; Aifantis KE; Fabry B Acta Biomater; 2015 Feb; 13():61-7. PubMed ID: 25462839 [TBL] [Abstract][Full Text] [Related]
13. Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition. Tran-Ba KH; Lee DJ; Zhu J; Paeng K; Kaufman LJ Biophys J; 2017 Oct; 113(8):1882-1892. PubMed ID: 29045881 [TBL] [Abstract][Full Text] [Related]
14. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Cross VL; Zheng Y; Won Choi N; Verbridge SS; Sutermaster BA; Bonassar LJ; Fischbach C; Stroock AD Biomaterials; 2010 Nov; 31(33):8596-607. PubMed ID: 20727585 [TBL] [Abstract][Full Text] [Related]
15. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1. Mewhort HE; Lipon BD; Svystonyuk DA; Teng G; Guzzardi DG; Silva C; Yong VW; Fedak PW Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H716-24. PubMed ID: 26801303 [TBL] [Abstract][Full Text] [Related]
17. Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels. Yang YL; Sun C; Wilhelm ME; Fox LJ; Zhu J; Kaufman LJ Biomaterials; 2011 Nov; 32(31):7932-40. PubMed ID: 21820735 [TBL] [Abstract][Full Text] [Related]
18. Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells. Nam S; Lee J; Brownfield DG; Chaudhuri O Biophys J; 2016 Nov; 111(10):2296-2308. PubMed ID: 27851951 [TBL] [Abstract][Full Text] [Related]