These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 21980446)
1. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing. Lahiry P; Lee LJ; Frey BJ; Rupar CA; Siu VM; Blencowe BJ; Hegele RA PLoS One; 2011; 6(9):e25400. PubMed ID: 21980446 [TBL] [Abstract][Full Text] [Related]
2. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Brooks MJ; Rajasimha HK; Roger JE; Swaroop A Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623 [TBL] [Abstract][Full Text] [Related]
3. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. Bottomly D; Walter NA; Hunter JE; Darakjian P; Kawane S; Buck KJ; Searles RP; Mooney M; McWeeney SK; Hitzemann R PLoS One; 2011 Mar; 6(3):e17820. PubMed ID: 21455293 [TBL] [Abstract][Full Text] [Related]
4. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq. Miller JA; Menon V; Goldy J; Kaykas A; Lee CK; Smith KA; Shen EH; Phillips JW; Lein ES; Hawrylycz MJ BMC Genomics; 2014 Feb; 15(1):154. PubMed ID: 24564186 [TBL] [Abstract][Full Text] [Related]
5. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling. Castillo D; Gálvez JM; Herrera LJ; Román BS; Rojas F; Rojas I BMC Bioinformatics; 2017 Nov; 18(1):506. PubMed ID: 29157215 [TBL] [Abstract][Full Text] [Related]
6. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. Xu X; Zhang Y; Williams J; Antoniou E; McCombie WR; Wu S; Zhu W; Davidson NO; Denoya P; Li E BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S1. PubMed ID: 23902433 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing. Mane SP; Evans C; Cooper KL; Crasta OR; Folkerts O; Hutchison SK; Harkins TT; Thierry-Mieg D; Thierry-Mieg J; Jensen RV BMC Genomics; 2009 Jun; 10():264. PubMed ID: 19523228 [TBL] [Abstract][Full Text] [Related]
8. Membrane gene ontology bias in sequencing and microarray obtained by housekeeping-gene analysis. Zhang Y; Akintola OS; Liu KJA; Sun B Gene; 2016 Jan; 575(2 Pt 2):559-566. PubMed ID: 26407868 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic analysis of Staphylococcus aureus using microarray and advanced next-generation RNA-seq technologies. Lei T; Becker A; Ji Y Methods Mol Biol; 2014; 1085():213-29. PubMed ID: 24085699 [TBL] [Abstract][Full Text] [Related]
10. A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. Raghavachari N; Barb J; Yang Y; Liu P; Woodhouse K; Levy D; O'Donnell CJ; Munson PJ; Kato GJ BMC Med Genomics; 2012 Jun; 5():28. PubMed ID: 22747986 [TBL] [Abstract][Full Text] [Related]
11. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. Chen Y; Gelfond JA; McManus LM; Shireman PK BMC Genomics; 2009 Aug; 10():407. PubMed ID: 19715577 [TBL] [Abstract][Full Text] [Related]
12. Power of deep sequencing and agilent microarray for gene expression profiling study. Feng L; Liu H; Liu Y; Lu Z; Guo G; Guo S; Zheng H; Gao Y; Cheng S; Wang J; Zhang K; Zhang Y Mol Biotechnol; 2010 Jun; 45(2):101-10. PubMed ID: 20432071 [TBL] [Abstract][Full Text] [Related]
14. EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. Rallapalli G; Kemen EM; Robert-Seilaniantz A; Segonzac C; Etherington GJ; Sohn KH; MacLean D; Jones JD BMC Genomics; 2014 May; 15(1):341. PubMed ID: 24884414 [TBL] [Abstract][Full Text] [Related]
15. Circulating Messenger RNA Profiling with Microarray and Next-generation Sequencing: Cross-platform Comparison. Shih CL; Luo JD; Chang JW; Chen TL; Chien YT; Yu CJ; Chiou CC Cancer Genomics Proteomics; 2015; 12(5):223-30. PubMed ID: 26417025 [TBL] [Abstract][Full Text] [Related]
16. RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering. Sîrbu A; Kerr G; Crane M; Ruskin HJ PLoS One; 2012; 7(12):e50986. PubMed ID: 23251411 [TBL] [Abstract][Full Text] [Related]
17. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. Zhao S; Fung-Leung WP; Bittner A; Ngo K; Liu X PLoS One; 2014; 9(1):e78644. PubMed ID: 24454679 [TBL] [Abstract][Full Text] [Related]
18. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments. Black MB; Parks BB; Pluta L; Chu TM; Allen BC; Wolfinger RD; Thomas RS Toxicol Sci; 2014 Feb; 137(2):385-403. PubMed ID: 24194394 [TBL] [Abstract][Full Text] [Related]
19. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. Rai MF; Tycksen ED; Sandell LJ; Brophy RH J Orthop Res; 2018 Jan; 36(1):484-497. PubMed ID: 28749036 [TBL] [Abstract][Full Text] [Related]
20. Next generation sequencing of microbial transcriptomes: challenges and opportunities. van Vliet AH FEMS Microbiol Lett; 2010 Jan; 302(1):1-7. PubMed ID: 19735299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]