These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21981509)

  • 1. Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes.
    Guo Z; Chang T; Guo X; Gao H
    Phys Rev Lett; 2011 Sep; 107(10):105502. PubMed ID: 21981509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic sliding friction between concentric carbon nanotubes.
    Tangney P; Louie SG; Cohen ML
    Phys Rev Lett; 2004 Aug; 93(6):065503. PubMed ID: 15323643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational dynamics and friction in double-walled carbon nanotubes.
    Servantie J; Gaspard P
    Phys Rev Lett; 2006 Nov; 97(18):186106. PubMed ID: 17155560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge length-dependent interlayer friction of graphene.
    Zhang H; Li Y; Qu J; Zhang J
    RSC Adv; 2020 Dec; 11(1):328-334. PubMed ID: 35423019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the effects of commensurability on friction between concentric carbon nanotubes.
    Zhu C; Shenai PM; Zhao Y
    Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of frictional force in carbon nanotube oscillators.
    Chen Y; Yang J; Wang X; Ni Z; Li D
    Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes.
    Rivera JL; McCabe C; Cummings PT
    Nanotechnology; 2005 Feb; 16(2):186-98. PubMed ID: 21727422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.
    Niguès A; Siria A; Vincent P; Poncharal P; Bocquet L
    Nat Mater; 2014 Jul; 13(7):688-93. PubMed ID: 24880730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative Thermophoresis in Concentric Carbon Nanotube Nanodevices.
    Leng J; Guo Z; Zhang H; Chang T; Guo X; Gao H
    Nano Lett; 2016 Oct; 16(10):6396-6402. PubMed ID: 27626825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion and friction characteristics of carbon nanotube arrays.
    Buldum A
    Nanotechnology; 2014 Aug; 25(34):345704. PubMed ID: 25102075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces.
    Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Velocity dependent friction laws in contact mode atomic force microscopy.
    Stark RW; Schitter G; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):309-17. PubMed ID: 15231324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying individual single-walled and double-walled carbon nanotubes by atomic force microscopy.
    DeBorde T; Joiner JC; Leyden MR; Minot ED
    Nano Lett; 2008 Nov; 8(11):3568-71. PubMed ID: 18811211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes.
    Kis A; Jensen K; Aloni S; Mickelson W; Zettl A
    Phys Rev Lett; 2006 Jul; 97(2):025501. PubMed ID: 16907454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of torsional strain effect on dynamic behavior of carbon nanotube thermal actuator.
    Huang J; Fan Y; Guo Y; Liang Y
    J Mol Model; 2020 Aug; 26(9):247. PubMed ID: 32827264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction laws at the nanoscale.
    Mo Y; Turner KT; Szlufarska I
    Nature; 2009 Feb; 457(7233):1116-9. PubMed ID: 19242472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy.
    Strus MC; Lahiji RR; Ares P; López V; Raman A; Reifenberger R
    Nanotechnology; 2009 Sep; 20(38):385709. PubMed ID: 19713587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.