These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21981532)

  • 1. Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular Stokes experiment.
    Tripathi A; Khakhar DV
    Phys Rev Lett; 2011 Sep; 107(10):108001. PubMed ID: 21981532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows.
    Faug T; Beguin R; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021305. PubMed ID: 19792117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the vertical plunging force of a spherical intruder into a prefluidized granular bed.
    Xu Y; Padding JT; Kuipers JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062203. PubMed ID: 25615081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical test of a particle simulation model in a sheared granular system.
    Rycroft CH; Orpe AV; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031305. PubMed ID: 19905108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical calculation of the buoyancy force on a particle in flowing granular mixtures.
    Kumar A; Khakhar DV; Tripathi A
    Phys Rev E; 2019 Oct; 100(4-1):042909. PubMed ID: 31770900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifetime of a cluster of spheres settling under gravity in Stokes flow.
    Ekiel-Jeżewska ML; Wajnryb E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):067301. PubMed ID: 21797518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-varying force from dense granular avalanches on a wall.
    Chanut B; Faug T; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041302. PubMed ID: 21230268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentation of spheres at small Reynolds number.
    Felderhof BU
    J Chem Phys; 2005 Jun; 122(21):214905. PubMed ID: 15974788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Archimedes' principle in fluidized granular systems.
    Huerta DA; Sosa V; Vargas MC; Ruiz-Suárez JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031307. PubMed ID: 16241426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sedimentation velocity and potential in concentrated suspensions of charged porous spheres.
    Keh HJ; Chen WC
    J Colloid Interface Sci; 2006 Apr; 296(2):710-20. PubMed ID: 16376357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate buoyancy and drag force models to predict particle segregation in vibrofluidized beds.
    Kiani Oshtorjani M; Meng L; Müller CR
    Phys Rev E; 2021 Jun; 103(6-1):062903. PubMed ID: 34271698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a projectile penetrating in granular systems.
    Hou M; Peng Z; Liu R; Lu K; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):062301. PubMed ID: 16485988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.
    Khain E; Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041303. PubMed ID: 18999414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension.
    Chen SB; Cai A
    J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media.
    Bocquet L; Errami J; Lubensky TC
    Phys Rev Lett; 2002 Oct; 89(18):184301. PubMed ID: 12398606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sedimentation equilibrium and the generalized Archimedes' principle.
    Parola A; Buzzaccaro S; Secchi E; Piazza R
    J Chem Phys; 2013 Mar; 138(11):114907. PubMed ID: 23534662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.
    Börzsönyi T; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061301. PubMed ID: 17280056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex dynamical interplay between solid particles and flow in driven granular suspensions.
    Yamanaka S; Furukawa A; Tanaka H
    Phys Rev E; 2019 Jul; 100(1-1):012907. PubMed ID: 31499807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the general concept of buoyancy in sedimentation and ultracentrifugation.
    Piazza R; Buzzaccaro S; Secchi E; Parola A
    Phys Biol; 2013 Aug; 10(4):045005. PubMed ID: 23913160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.