These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 21981577)
1. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. Motto I; Bordogna A; Soshilov AA; Denison MS; Bonati L J Chem Inf Model; 2011 Nov; 51(11):2868-81. PubMed ID: 21981577 [TBL] [Abstract][Full Text] [Related]
2. Comparative In Vitro and In Silico Analysis of the Selectivity of Indirubin as a Human Ah Receptor Agonist. Faber SC; Soshilov AA; Giani Tagliabue S; Bonati L; Denison MS Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201897 [TBL] [Abstract][Full Text] [Related]
3. Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. Pandini A; Soshilov AA; Song Y; Zhao J; Bonati L; Denison MS Biochemistry; 2009 Jun; 48(25):5972-83. PubMed ID: 19456125 [TBL] [Abstract][Full Text] [Related]
4. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex. Orlowska K; Molcan T; Swigonska S; Sadowska A; Jablonska M; Nynca A; Jastrzebski JP; Ciereszko RE J Mol Graph Model; 2016 Jun; 67():119-26. PubMed ID: 27288759 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. Pandini A; Denison MS; Song Y; Soshilov AA; Bonati L Biochemistry; 2007 Jan; 46(3):696-708. PubMed ID: 17223691 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. Fraccalvieri D; Soshilov AA; Karchner SI; Franks DG; Pandini A; Bonati L; Hahn ME; Denison MS Biochemistry; 2013 Jan; 52(4):714-25. PubMed ID: 23286227 [TBL] [Abstract][Full Text] [Related]
8. The Cellular and Molecular Determinants of Naphthoquinone-Dependent Activation of the Aryl Hydrocarbon Receptor. Faber SC; Giani Tagliabue S; Bonati L; Denison MS Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32526934 [TBL] [Abstract][Full Text] [Related]
9. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines. Vorrink SU; Severson PL; Kulak MV; Futscher BW; Domann FE Toxicol Appl Pharmacol; 2014 Feb; 274(3):408-16. PubMed ID: 24355420 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive binding analysis of polybrominated diphenyl ethers and aryl hydrocarbon receptor via an integrated molecular modeling approach. Xiao H; Mei N; Chi Q; Wang X Chemosphere; 2021 Jan; 262():128356. PubMed ID: 33182092 [TBL] [Abstract][Full Text] [Related]
11. Ligand binding and functional selectivity of L-tryptophan metabolites at the mouse aryl hydrocarbon receptor (mAhR). Nuti R; Gargaro M; Matino D; Dolciami D; Grohmann U; Puccetti P; Fallarino F; Macchiarulo A J Chem Inf Model; 2014 Dec; 54(12):3373-83. PubMed ID: 25402742 [TBL] [Abstract][Full Text] [Related]
12. Aryl hydrocarbon receptor-induced activation of the human IGH hs1.2 enhancer: Mutational analysis of putative regulatory binding motifs. Snyder AD; Ochs SD; Johnson BE; Sulentic CEW Mol Immunol; 2020 Apr; 120():164-178. PubMed ID: 32146146 [TBL] [Abstract][Full Text] [Related]
13. Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major). Bak SM; Iida M; Soshilov AA; Denison MS; Iwata H; Kim EY Arch Toxicol; 2017 Jan; 91(1):301-312. PubMed ID: 27188387 [TBL] [Abstract][Full Text] [Related]
14. In silico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-, ligand-, and species-specific activations. Hirano M; Hwang JH; Park HJ; Bak SM; Iwata H; Kim EY Environ Sci Technol; 2015 Mar; 49(6):3795-804. PubMed ID: 25692546 [TBL] [Abstract][Full Text] [Related]
15. Induction of a chloracne phenotype in an epidermal equivalent model by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is dependent on aryl hydrocarbon receptor activation and is not reproduced by aryl hydrocarbon receptor knock down. Forrester AR; Elias MS; Woodward EL; Graham M; Williams FM; Reynolds NJ J Dermatol Sci; 2014 Jan; 73(1):10-22. PubMed ID: 24161567 [TBL] [Abstract][Full Text] [Related]
16. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors. Karchner SI; Powell WH; Hahn ME J Biol Chem; 1999 Nov; 274(47):33814-24. PubMed ID: 10559277 [TBL] [Abstract][Full Text] [Related]
17. Transitional States in Ligand-Dependent Transformation of the Aryl Hydrocarbon Receptor into Its DNA-Binding Form. Soshilov AA; Motta S; Bonati L; Denison MS Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32252465 [TBL] [Abstract][Full Text] [Related]
18. Structural modeling of the AhR:ARNT complex in the bHLH-PASA-PASB region elucidates the key determinants of dimerization. Corrada D; Denison MS; Bonati L Mol Biosyst; 2017 May; 13(5):981-990. PubMed ID: 28393157 [TBL] [Abstract][Full Text] [Related]
19. The AHR1-ARNT1 dimerization pair is a major regulator of the response to natural ligands, but not to TCDD, in the chicken. Koh DH; Hwang JH; Park JG; Song WS; Iwata H; Kim EY Ecotoxicol Environ Saf; 2020 Sep; 201():110835. PubMed ID: 32563159 [TBL] [Abstract][Full Text] [Related]
20. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Butler RA; Kelley ML; Powell WH; Hahn ME; Van Beneden RJ Gene; 2001 Oct; 278(1-2):223-34. PubMed ID: 11707340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]