BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21981731)

  • 1. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.
    Gianola D; Okut H; Weigel KA; Rosa GJ
    BMC Genet; 2011 Oct; 12():87. PubMed ID: 21981731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.
    Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D
    Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle.
    Ehret A; Hochstuhl D; Gianola D; Thaller G
    Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data.
    Morota G; Koyama M; Rosa GJ; Weigel KA; Gianola D
    Genet Sel Evol; 2013 Jun; 45(1):17. PubMed ID: 23763755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.
    Pérez-Rodríguez P; Gianola D; González-Camacho JM; Crossa J; Manès Y; Dreisigacker S
    G3 (Bethesda); 2012 Dec; 2(12):1595-605. PubMed ID: 23275882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects.
    Sun C; VanRaden PM; Cole JB; O'Connell JR
    PLoS One; 2014; 9(8):e103934. PubMed ID: 25084281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits.
    Aliloo H; Pryce JE; González-Recio O; Cocks BG; Hayes BJ
    Genet Sel Evol; 2016 Feb; 48():8. PubMed ID: 26830030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of support vector regression to genome-assisted prediction of quantitative traits.
    Long N; Gianola D; Rosa GJ; Weigel KA
    Theor Appl Genet; 2011 Nov; 123(7):1065-74. PubMed ID: 21739137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial basis function regression methods for predicting quantitative traits using SNP markers.
    Long N; Gianola D; Rosa GJ; Weigel KA; Kranis A; González-Recio O
    Genet Res (Camb); 2010 Jun; 92(3):209-25. PubMed ID: 20667165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection.
    Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ
    J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
    Brito Lopes F; Magnabosco CU; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Baldi F
    J Anim Breed Genet; 2020 Sep; 137(5):438-448. PubMed ID: 32020678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-enabled prediction of genetic values using radial basis function neural networks.
    González-Camacho JM; de Los Campos G; Pérez P; Gianola D; Cairns JE; Mahuku G; Babu R; Crossa J
    Theor Appl Genet; 2012 Aug; 125(4):759-71. PubMed ID: 22566067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods.
    De los Campos G; Gianola D; Rosa GJ; Weigel KA; Crossa J
    Genet Res (Camb); 2010 Aug; 92(4):295-308. PubMed ID: 20943010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds.
    Colombani C; Legarra A; Fritz S; Guillaume F; Croiseau P; Ducrocq V; Robert-Granié C
    J Dairy Sci; 2013 Jan; 96(1):575-91. PubMed ID: 23127905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive ability of genome-assisted statistical models under various forms of gene action.
    Momen M; Mehrgardi AA; Sheikhi A; Kranis A; Tusell L; Morota G; Rosa GJM; Gianola D
    Sci Rep; 2018 Aug; 8(1):12309. PubMed ID: 30120288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marker-assisted prediction of non-additive genetic values.
    Long N; Gianola D; Rosa GJ; Weigel KA
    Genetica; 2011 Jul; 139(7):843-54. PubMed ID: 21674154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Value of sharing cow reference population between countries on reliability of genomic prediction for milk yield traits.
    Haile-Mariam M; MacLeod IM; Bolormaa S; Schrooten C; O'Connor E; de Jong G; Daetwyler HD; Pryce JE
    J Dairy Sci; 2020 Feb; 103(2):1711-1728. PubMed ID: 31864746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.