BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21981731)

  • 21. Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins.
    Kang H; Ning C; Zhou L; Zhang S; Yan Q; Liu JF
    J Dairy Sci; 2018 Dec; 101(12):11143-11149. PubMed ID: 30268613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-enabled methods for predicting litter size in pigs: a comparison.
    Tusell L; Pérez-Rodríguez P; Forni S; Wu XL; Gianola D
    Animal; 2013 Nov; 7(11):1739-49. PubMed ID: 23880322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heritabilities and genetic correlations in the same traits across different strata of herds created according to continuous genomic, genetic, and phenotypic descriptors.
    Yin T; König S
    J Dairy Sci; 2018 Mar; 101(3):2171-2186. PubMed ID: 29248231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.
    Crossa J; Campos Gde L; Pérez P; Gianola D; Burgueño J; Araus JL; Makumbi D; Singh RP; Dreisigacker S; Yan J; Arief V; Banziger M; Braun HJ
    Genetics; 2010 Oct; 186(2):713-24. PubMed ID: 20813882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple quantitative trait analysis using bayesian networks.
    Scutari M; Howell P; Balding DJ; Mackay I
    Genetics; 2014 Sep; 198(1):129-37. PubMed ID: 25236454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression.
    Gianola D; Fernando RL; Schön CC
    Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits.
    Gebreyesus G; Lund MS; Buitenhuis B; Bovenhuis H; Poulsen NA; Janss LG
    Genet Sel Evol; 2017 Dec; 49(1):89. PubMed ID: 29207947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.
    Lee J; Cheng H; Garrick D; Golden B; Dekkers J; Park K; Lee D; Fernando R
    Genet Sel Evol; 2017 Jan; 49(1):2. PubMed ID: 28093065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits.
    Gianola D; van Kaam JB
    Genetics; 2008 Apr; 178(4):2289-303. PubMed ID: 18430950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures.
    Howard R; Carriquiry AL; Beavis WD
    G3 (Bethesda); 2014 Apr; 4(6):1027-46. PubMed ID: 24727289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Including overseas performance information in genomic evaluations of Australian dairy cattle.
    Haile-Mariam M; Pryce JE; Schrooten C; Hayes BJ
    J Dairy Sci; 2015 May; 98(5):3443-59. PubMed ID: 25771052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.
    van Binsbergen R; Veerkamp RF; Calus MP
    J Dairy Sci; 2012 Apr; 95(4):2132-43. PubMed ID: 22459858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses.
    Liu A; Lund MS; Boichard D; Karaman E; Guldbrandtsen B; Fritz S; Aamand GP; Nielsen US; Sahana G; Wang Y; Su G
    Genet Sel Evol; 2020 Aug; 52(1):48. PubMed ID: 32799816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.
    Erbe M; Hayes BJ; Matukumalli LK; Goswami S; Bowman PJ; Reich CM; Mason BA; Goddard ME
    J Dairy Sci; 2012 Jul; 95(7):4114-29. PubMed ID: 22720968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle.
    Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU
    Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-trait Bayesian method for mapping QTL and genomic prediction.
    Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME
    Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle.
    Brym P; Kamiński S; Ruść A
    J Appl Genet; 2004; 45(4):445-52. PubMed ID: 15523155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle.
    Jiang Z; Michal JJ; Chen J; Daniels TF; Kunej T; Garcia MD; Gaskins CT; Busboom JR; Alexander LJ; Wright RW; Macneil MD
    Int J Biol Sci; 2009 Jul; 5(6):528-42. PubMed ID: 19727437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.