BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21981802)

  • 1. Detecting dependencies between spike trains of pairs of neurons through copulas.
    Sacerdote L; Tamborrino M; Zucca C
    Brain Res; 2012 Jan; 1434():243-56. PubMed ID: 21981802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of dependency features of spike trains through copulas.
    Verzelli P; Sacerdote L
    Biosystems; 2019 Oct; 184():104014. PubMed ID: 31401080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable timescales of repeated spike patterns in synfire chain with Mexican-hat connectivity.
    Hamaguchi K; Okada M; Aihara K
    Neural Comput; 2007 Sep; 19(9):2468-91. PubMed ID: 17650066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attractor reliability reveals deterministic structure in neuronal spike trains.
    Tiesinga PH; Fellous JM; Sejnowski TJ
    Neural Comput; 2002 Jul; 14(7):1629-50. PubMed ID: 12079549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What causes a neuron to spike?
    Agüera y Arcas B; Fairhall AL
    Neural Comput; 2003 Aug; 15(8):1789-807. PubMed ID: 14511513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representing spike trains using constant sampling intervals.
    Hirata Y; Aihara K
    J Neurosci Methods; 2009 Oct; 183(2):277-86. PubMed ID: 19583980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information coding and oscillatory activity in synfire neural networks with and without inhibitory coupling.
    Moradi F
    Biol Cybern; 2004 Nov; 91(5):283-94. PubMed ID: 15452717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A copulas approach to neuronal networks models.
    Sacerdote L; Sirovich R
    J Physiol Paris; 2010; 104(3-4):223-30. PubMed ID: 19941955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gradient learning rule for the tempotron.
    Urbanczik R; Senn W
    Neural Comput; 2009 Feb; 21(2):340-52. PubMed ID: 19431262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
    Onken A; Grünewälder S; Munk MH; Obermayer K
    PLoS Comput Biol; 2009 Nov; 5(11):e1000577. PubMed ID: 19956759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
    Okatan M; Wilson MA; Brown EN
    Neural Comput; 2005 Sep; 17(9):1927-61. PubMed ID: 15992486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional probability-based significance tests for sequential patterns in multineuronal spike trains.
    Sastry PS; Unnikrishnan KP
    Neural Comput; 2010 Apr; 22(4):1025-59. PubMed ID: 19922295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional connectivity among spike trains in neural assemblies during rat working memory task.
    Xie J; Bai W; Liu T; Tian X
    Behav Brain Res; 2014 Nov; 274():248-57. PubMed ID: 25150041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical significance of sequential firing patterns in multi-neuronal spike trains.
    Diekman CO; Sastry PS; Unnikrishnan KP
    J Neurosci Methods; 2009 Sep; 182(2):279-84. PubMed ID: 19559053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural network simulation of simultaneous single-unit activity recorded from the dragonfly ganglia.
    Faller WE; Luttges MW
    Biomed Sci Instrum; 1990; 26():201-8. PubMed ID: 2334768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical technique for analysing functional connectivity of multiple spike trains.
    Masud MS; Borisyuk R
    J Neurosci Methods; 2011 Mar; 196(1):201-19. PubMed ID: 21236298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.