These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 21982215)
1. Fabrication and morphology control of electrospun poly(γ-glutamic acid) nanofibers for biomedical applications. Wang S; Cao X; Shen M; Guo R; Bányai I; Shi X Colloids Surf B Biointerfaces; 2012 Jan; 89():254-64. PubMed ID: 21982215 [TBL] [Abstract][Full Text] [Related]
2. Poly(amidoamine) dendrimer-enabled simultaneous stabilization and functionalization of electrospun poly(γ-glutamic acid) nanofibers. Wang S; Zhu J; Shen M; Zhu M; Shi X ACS Appl Mater Interfaces; 2014 Feb; 6(3):2153-61. PubMed ID: 24456208 [TBL] [Abstract][Full Text] [Related]
3. Disulfide-crosslinked electrospun poly(gamma-glutamic acid) nonwovens as reduction-responsive scaffolds. Yoshida H; Klinkhammer K; Matsusaki M; Möller M; Klee D; Akashi M Macromol Biosci; 2009 Jun; 9(6):568-74. PubMed ID: 19370750 [TBL] [Abstract][Full Text] [Related]
4. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber. Yang JM; Yang JH; Tsou SC; Ding CH; Hsu CC; Yang KC; Yang CC; Chen KS; Chen SW; Wang JS Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():170-177. PubMed ID: 27207051 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262 [TBL] [Abstract][Full Text] [Related]
6. Novel functional biodegradable polymer. III. The construction of poly(gamma-glutamic acid)-sulfonate hydrogel with fibroblast growth factor-2 activity. Matsusaki M; Serizawa T; Kishida A; Akashi M J Biomed Mater Res A; 2005 Jun; 73(4):485-91. PubMed ID: 15900608 [TBL] [Abstract][Full Text] [Related]
7. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid. Poo H; Park C; Kwak MS; Choi DY; Hong SP; Lee IH; Lim YT; Choi YK; Bae SR; Uyama H; Kim CJ; Sung MH Chem Biodivers; 2010 Jun; 7(6):1555-62. PubMed ID: 20564573 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Tsao CT; Chang CH; Lin YY; Wu MF; Wang JL; Han JL; Hsieh KH Carbohydr Res; 2010 Aug; 345(12):1774-80. PubMed ID: 20598293 [TBL] [Abstract][Full Text] [Related]
9. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility. Dou C; Li Z; Gong J; Li Q; Qiao C; Zhang J Int J Biol Macromol; 2021 Feb; 170():354-365. PubMed ID: 33359810 [TBL] [Abstract][Full Text] [Related]
10. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering. Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions. Akagi T; Watanabe K; Kim H; Akashi M Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513 [TBL] [Abstract][Full Text] [Related]
13. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Hua J; Li Z; Xia W; Yang N; Gong J; Zhang J; Qiao C Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():879-92. PubMed ID: 26838920 [TBL] [Abstract][Full Text] [Related]
14. Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering. Matsusaki M; Akashi M Biomacromolecules; 2005; 6(6):3351-6. PubMed ID: 16283765 [TBL] [Abstract][Full Text] [Related]
15. Polyelectrolyte complex nanofibers from poly(γ-glutamic acid) and fluorescent chitosan oligomer. Kim HC; Kim MH; Park WH Int J Biol Macromol; 2018 Oct; 118(Pt A):238-243. PubMed ID: 29890247 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Kunioka M Macromol Biosci; 2004 Mar; 4(3):324-9. PubMed ID: 15468223 [TBL] [Abstract][Full Text] [Related]
17. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid). Akagi T; Higashi M; Kaneko T; Kida T; Akashi M Macromol Biosci; 2005 Jul; 5(7):598-602. PubMed ID: 15991216 [TBL] [Abstract][Full Text] [Related]
18. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Sung MH; Park C; Kim CJ; Poo H; Soda K; Ashiuchi M Chem Rec; 2005; 5(6):352-66. PubMed ID: 16278834 [TBL] [Abstract][Full Text] [Related]
19. Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug. Kuo YC; Yu HW Colloids Surf B Biointerfaces; 2011 Nov; 88(1):158-64. PubMed ID: 21764569 [TBL] [Abstract][Full Text] [Related]
20. Layered hydrogel of poly(γ-glutamic acid), sodium alginate, and chitosan: fluorescence observation of structure and cytocompatibility. Lee YH; Chang JJ; Lai WF; Yang MC; Chien CT Colloids Surf B Biointerfaces; 2011 Sep; 86(2):409-13. PubMed ID: 21561745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]