These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21982277)

  • 1. Classification of microarrays; synergistic effects between normalization, gene selection and machine learning.
    Önskog J; Freyhult E; Landfors M; Rydén P; Hvidsten TR
    BMC Bioinformatics; 2011 Oct; 12():390. PubMed ID: 21982277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data.
    Piao Y; Piao M; Park K; Ryu KH
    Bioinformatics; 2012 Dec; 28(24):3306-15. PubMed ID: 23060613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New variable selection method using interval segmentation purity with application to blockwise kernel transform support vector machine classification of high-dimensional microarray data.
    Tang LJ; Du W; Fu HY; Jiang JH; Wu HL; Shen GL; Yu RQ
    J Chem Inf Model; 2009 Aug; 49(8):2002-9. PubMed ID: 19645418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
    Statnikov A; Aliferis CF; Tsamardinos I; Hardin D; Levy S
    Bioinformatics; 2005 Mar; 21(5):631-43. PubMed ID: 15374862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable selection using probability density function similarity for support vector machine classification of high-dimensional microarray data.
    Tang LJ; Jiang JH; Wu HL; Shen GL; Yu RQ
    Talanta; 2009 Jul; 79(2):260-7. PubMed ID: 19559875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable feature selection and classification algorithms for multiclass microarray data.
    Student S; Fujarewicz K
    Biol Direct; 2012 Oct; 7():33. PubMed ID: 23031190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel gene selection algorithm for cancer classification using microarray datasets.
    Alanni R; Hou J; Azzawi H; Xiang Y
    BMC Med Genomics; 2019 Jan; 12(1):10. PubMed ID: 30646919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene selection from microarray data for cancer classification--a machine learning approach.
    Wang Y; Tetko IV; Hall MA; Frank E; Facius A; Mayer KF; Mewes HW
    Comput Biol Chem; 2005 Feb; 29(1):37-46. PubMed ID: 15680584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of different machine learning methods on microarray gene expression data.
    Pirooznia M; Yang JY; Yang MQ; Deng Y
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S13. PubMed ID: 18366602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene shaving using a sensitivity analysis of kernel based machine learning approach, with applications to cancer data.
    Alam MA; Shahjaman M; Rahman MF; Hossain F; Deng HW
    PLoS One; 2019; 14(5):e0217027. PubMed ID: 31120939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction.
    Pochet N; De Smet F; Suykens JA; De Moor BL
    Bioinformatics; 2004 Nov; 20(17):3185-95. PubMed ID: 15231531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of gene ranking for classification of microarray samples.
    Zhang C; Lu X; Zhang X
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(3):312-20. PubMed ID: 17048468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction.
    Shi P; Ray S; Zhu Q; Kon MA
    BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of normalization methods on the performance of supervised learning algorithms applied to HTSeq-FPKM-UQ data sets: 7SK RNA expression as a predictor of survival in patients with colon adenocarcinoma.
    Shahriyari L
    Brief Bioinform; 2019 May; 20(3):985-994. PubMed ID: 29112707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A greedy algorithm for gene selection based on SVM and correlation.
    Song M; Rajasekaran S
    Int J Bioinform Res Appl; 2010; 6(3):296-307. PubMed ID: 20615837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kernel hierarchical gene clustering from microarray expression data.
    Qin J; Lewis DP; Noble WS
    Bioinformatics; 2003 Nov; 19(16):2097-104. PubMed ID: 14594715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast gene selection method for multi-cancer classification using multiple support vector data description.
    Cao J; Zhang L; Wang B; Li F; Yang J
    J Biomed Inform; 2015 Feb; 53():381-9. PubMed ID: 25549938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene selection and classification for cancer microarray data based on machine learning and similarity measures.
    Liu Q; Sung AH; Chen Z; Liu J; Chen L; Qiao M; Wang Z; Huang X; Deng Y
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S1. PubMed ID: 22369383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.