These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21982293)

  • 1. Silk fibroin derived polypeptide-induced biomineralization of collagen.
    Marelli B; Ghezzi CE; Alessandrino A; Barralet JE; Freddi G; Nazhat SN
    Biomaterials; 2012 Jan; 33(1):102-8. PubMed ID: 21982293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk fibroin-derived polypeptides additives to promote hydroxyapatite nucleation in dense collagen hydrogels.
    Deen I; Rosei F
    PLoS One; 2019; 14(7):e0219429. PubMed ID: 31306436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function.
    Marelli B; Ghezzi CE; Mohn D; Stark WJ; Barralet JE; Boccaccini AR; Nazhat SN
    Biomaterials; 2011 Dec; 32(34):8915-26. PubMed ID: 21889796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk as templates for hydroxyapatite biomineralization: A comparative study of Bombyx mori and Antheraea pernyi silkworm silks.
    Zhang H; You R; Yan K; Lu Z; Fan Q; Li X; Wang D
    Int J Biol Macromol; 2020 Dec; 164():2842-2850. PubMed ID: 32828890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation.
    Griffanti G; Jiang W; Nazhat SN
    Biomater Sci; 2019 Feb; 7(3):1064-1077. PubMed ID: 30629053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer.
    Yoo MK; Kweon HY; Lee KG; Lee HC; Cho CS
    Int J Biol Macromol; 2004 Aug; 34(4):263-70. PubMed ID: 15374683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds.
    Marelli B; Ghezzi CE; Barralet JE; Boccaccini AR; Nazhat SN
    Biomacromolecules; 2010 Jun; 11(6):1470-9. PubMed ID: 20443577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stem cell-seeded multilayered dense collagen-silk fibroin hybrid for tissue engineering applications.
    Ghezzi CE; Marelli B; Muja N; Hirota N; Martin JG; Barralet JE; Alessandrino A; Freddi G; Nazhat SN
    Biotechnol J; 2011 Oct; 6(10):1198-207. PubMed ID: 21751393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.
    Yang M; Shuai Y; Zhou G; Mandal N; Zhu L
    Biomed Mater Eng; 2014; 24(1):731-40. PubMed ID: 24211958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospinning of silk fibroin and collagen for vascular tissue engineering.
    Zhou J; Cao C; Ma X; Lin J
    Int J Biol Macromol; 2010 Nov; 47(4):514-9. PubMed ID: 20688101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.
    Jin Y; Kundu B; Cai Y; Kundu SC; Yao J
    Colloids Surf B Biointerfaces; 2015 Oct; 134():339-45. PubMed ID: 26209967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels.
    Jiang W; Griffanti G; Tamimi F; McKee MD; Nazhat SN
    J Struct Biol; 2020 Oct; 212(1):107592. PubMed ID: 32736073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibril formation pH controls intrafibrillar collagen biomineralization in vitro and in vivo.
    Marelli B; Ghezzi CE; Zhang YL; Rouiller I; Barralet JE; Nazhat SN
    Biomaterials; 2015 Jan; 37():252-9. PubMed ID: 25453955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process.
    Ayutsede J; Gandhi M; Sukigara S; Ye H; Hsu CM; Gogotsi Y; Ko F
    Biomacromolecules; 2006 Jan; 7(1):208-14. PubMed ID: 16398517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and properties of silk hydrogels.
    Kim UJ; Park J; Li C; Jin HJ; Valluzzi R; Kaplan DL
    Biomacromolecules; 2004; 5(3):786-92. PubMed ID: 15132662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.