BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 21982370)

  • 1. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function.
    Cohen S; Gabel HW; Hemberg M; Hutchinson AN; Sadacca LA; Ebert DH; Harmin DA; Greenberg RS; Verdine VK; Zhou Z; Wetsel WC; West AE; Greenberg ME
    Neuron; 2011 Oct; 72(1):72-85. PubMed ID: 21982370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MeCP2: phosphorylated locally, acting globally.
    Rutlin M; Nelson SB
    Neuron; 2011 Oct; 72(1):3-5. PubMed ID: 21982363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation.
    Zhou Z; Hong EJ; Cohen S; Zhao WN; Ho HY; Schmidt L; Chen WG; Lin Y; Savner E; Griffith EC; Hu L; Steen JA; Weitz CJ; Greenberg ME
    Neuron; 2006 Oct; 52(2):255-69. PubMed ID: 17046689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-induced MeCP2 phosphorylation regulates retinogeniculate synapse refinement.
    Tzeng CP; Whitwam T; Boxer LD; Li E; Silberfeld A; Trowbridge S; Mei K; Lin C; Shamah R; Griffith EC; Renthal W; Chen C; Greenberg ME
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310344120. PubMed ID: 37871205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution.
    Kaufmann WE; Johnston MV; Blue ME
    Brain Dev; 2005 Nov; 27 Suppl 1():S77-S87. PubMed ID: 16182491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR.
    Ebert DH; Gabel HW; Robinson ND; Kastan NR; Hu LS; Cohen S; Navarro AJ; Lyst MJ; Ekiert R; Bird AP; Greenberg ME
    Nature; 2013 Jul; 499(7458):341-5. PubMed ID: 23770587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function.
    Tao J; Hu K; Chang Q; Wu H; Sherman NE; Martinowich K; Klose RJ; Schanen C; Jaenisch R; Wang W; Sun YE
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4882-7. PubMed ID: 19225110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of neural differentiation, synaptic scaling and animal behavior by MeCP2 phophorylation.
    Zhong X; Li H; Kim J; Chang Q
    Neurobiol Learn Mem; 2019 Nov; 165():106859. PubMed ID: 29698767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses.
    Goffin D; Allen M; Zhang L; Amorim M; Wang IT; Reyes AR; Mercado-Berton A; Ong C; Cohen S; Hu L; Blendy JA; Carlson GC; Siegel SJ; Greenberg ME; Zhou Z
    Nat Neurosci; 2011 Nov; 15(2):274-83. PubMed ID: 22119903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MeCP2 phosphorylation in the brain: from transcription to behavior.
    Damen D; Heumann R
    Biol Chem; 2013 Dec; 394(12):1595-605. PubMed ID: 23912219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains.
    Itoh M; Ide S; Takashima S; Kudo S; Nomura Y; Segawa M; Kubota T; Mori H; Tanaka S; Horie H; Tanabe Y; Goto Y
    J Neuropathol Exp Neurol; 2007 Feb; 66(2):117-23. PubMed ID: 17278996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome.
    Peddada S; Yasui DH; LaSalle JM
    Hum Mol Genet; 2006 Jun; 15(12):2003-14. PubMed ID: 16682435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes in Histone H3 lysine 9 acetylation localization patterns during neuronal maturation require MeCP2.
    Thatcher KN; LaSalle JM
    Epigenetics; 2006; 1(1):24-31. PubMed ID: 17464364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism.
    Swanberg SE; Nagarajan RP; Peddada S; Yasui DH; LaSalle JM
    Hum Mol Genet; 2009 Feb; 18(3):525-34. PubMed ID: 19000991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome.
    Miyake K; Hirasawa T; Soutome M; Itoh M; Goto Y; Endoh K; Takahashi K; Kudo S; Nakagawa T; Yokoi S; Taira T; Inazawa J; Kubota T
    BMC Neurosci; 2011 Aug; 12():81. PubMed ID: 21824415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain.
    Nguyen MV; Du F; Felice CA; Shan X; Nigam A; Mandel G; Robinson JK; Ballas N
    J Neurosci; 2012 Jul; 32(29):10021-34. PubMed ID: 22815516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Setdb1-mediated histone H3K9 hypermethylation in neurons worsens the neurological phenotype of Mecp2-deficient mice.
    Jiang Y; Matevossian A; Guo Y; Akbarian S
    Neuropharmacology; 2011 Jun; 60(7-8):1088-97. PubMed ID: 20869373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome.
    Wu H; Tao J; Chen PJ; Shahab A; Ge W; Hart RP; Ruan X; Ruan Y; Sun YE
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18161-6. PubMed ID: 20921386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MeCP2 Levels Regulate the 3D Structure of Heterochromatic Foci in Mouse Neurons.
    Ito-Ishida A; Baker SA; Sillitoe RV; Sun Y; Zhou J; Ono Y; Iwakiri J; Yuzaki M; Zoghbi HY
    J Neurosci; 2020 Nov; 40(45):8746-8766. PubMed ID: 33046553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MeCP2 is required for global heterochromatic and nucleolar changes during activity-dependent neuronal maturation.
    Singleton MK; Gonzales ML; Leung KN; Yasui DH; Schroeder DI; Dunaway K; LaSalle JM
    Neurobiol Dis; 2011 Jul; 43(1):190-200. PubMed ID: 21420494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.