BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21982535)

  • 1. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration.
    Cárdenas-Escudero C; Morales-Flórez V; Pérez-López R; Santos A; Esquivias L
    J Hazard Mater; 2011 Nov; 196():431-5. PubMed ID: 21982535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO₂ sequestration.
    Contreras M; Pérez-López R; Gázquez MJ; Morales-Flórez V; Santos A; Esquivias L; Bolívar JP
    Waste Manag; 2015 Nov; 45():412-9. PubMed ID: 26209345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.
    Pérez-López R; Alvarez-Valero AM; Nieto JM
    J Hazard Mater; 2007 Sep; 148(3):745-50. PubMed ID: 17683858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: The effects of gypsum dosing.
    Renforth P; Mayes WM; Jarvis AP; Burke IT; Manning DA; Gruiz K
    Sci Total Environ; 2012 Apr; 421-422():253-9. PubMed ID: 22349140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.
    Rentería-Villalobos M; Vioque I; Mantero J; Manjón G
    J Hazard Mater; 2010 Sep; 181(1-3):193-203. PubMed ID: 20537794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles.
    Huntzinger DN; Gierke JS; Sutter LL; Kawatra SK; Eisele TC
    J Hazard Mater; 2009 Aug; 168(1):31-7. PubMed ID: 19269085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste.
    Coruh S; Ergun ON
    J Hazard Mater; 2010 Jan; 173(1-3):468-73. PubMed ID: 19762146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impact and management of phosphogypsum.
    Tayibi H; Choura M; López FA; Alguacil FJ; López-Delgado A
    J Environ Manage; 2009 Jun; 90(8):2377-86. PubMed ID: 19406560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contamination and restoration of an estuary affected by phosphogypsum releases.
    Villa M; Mosqueda F; Hurtado S; Mantero J; Manjón G; Periañez R; Vaca F; García-Tenorio R
    Sci Total Environ; 2009 Dec; 408(1):69-77. PubMed ID: 19822348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.
    Santos AJ; Mazzilli BP; Fávaro DI; Silva PS
    J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorization of phosphogypsum waste as asphaltic bitumen modifier.
    Cuadri AA; Navarro FJ; García-Morales M; Bolívar JP
    J Hazard Mater; 2014 Aug; 279():11-6. PubMed ID: 25036995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of redox oscillations on the phosphogypsum waste in an estuarine salt-marsh system.
    Papaslioti EM; Pérez-López R; Parviainen A; Phan VTH; Marchesi C; Fernandez-Martinez A; Garrido CJ; Nieto JM; Charlet L
    Chemosphere; 2020 Mar; 242():125174. PubMed ID: 31675582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of radiation exposures in a tropical phosphogypsum disposal environment.
    Haridasan PP; Pillai PM; Tripathi RM; Puranik VD
    Radiat Prot Dosimetry; 2009 Jul; 135(3):211-5. PubMed ID: 19483206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste.
    Pérez-López R; Castillo J; Quispe D; Nieto JM
    J Hazard Mater; 2010 May; 177(1-3):762-72. PubMed ID: 20080339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable isotope insights into the weathering processes of a phosphogypsum disposal area.
    Papaslioti EM; Pérez-López R; Parviainen A; Macías F; Delgado-Huertas A; Garrido CJ; Marchesi C; Nieto JM
    Water Res; 2018 Sep; 140():344-353. PubMed ID: 29751316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2009 Oct; 100(10):854-7. PubMed ID: 19596498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum.
    Castillo J; Pérez-López R; Sarmiento AM; Nieto JM
    Sci Total Environ; 2012 Nov; 439():106-13. PubMed ID: 23063915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing arsenic sorption on red mud by phosphogypsum addition.
    Lopes G; Guilherme LR; Costa ET; Curi N; Penha HG
    J Hazard Mater; 2013 Nov; 262():1196-203. PubMed ID: 22795841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of phosphogypsum impact on the salt-marshes of the Tinto river (SW Spain): role of natural attenuation processes.
    Pérez-López R; Castillo J; Sarmiento AM; Nieto JM
    Mar Pollut Bull; 2011 Dec; 62(12):2787-96. PubMed ID: 21992931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures.
    Pérez-López R; Macías F; Cánovas CR; Sarmiento AM; Pérez-Moreno SM
    Sci Total Environ; 2016 May; 553():42-51. PubMed ID: 26901801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.