BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21982536)

  • 1. Decontamination of waters polluted with simazine by sorption on mesoporous metal oxides.
    Addorisio V; Pirozzi D; Esposito S; Sannino F
    J Hazard Mater; 2011 Nov; 196():242-7. PubMed ID: 21982536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption capacity of mesoporous metal oxides for the removal of MCPA from polluted waters.
    Addorisio V; Esposito S; Sannino F
    J Agric Food Chem; 2010 Apr; 58(8):5011-6. PubMed ID: 20329794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies.
    Kumar E; Bhatnagar A; Kumar U; Sillanpää M
    J Hazard Mater; 2011 Feb; 186(2-3):1042-9. PubMed ID: 21177029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste).
    Castaldi P; Silvetti M; Enzo S; Melis P
    J Hazard Mater; 2010 Mar; 175(1-3):172-8. PubMed ID: 19853993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation.
    Li FB; Li XZ; Liu CS; Liu TX
    J Hazard Mater; 2007 Oct; 149(1):199-207. PubMed ID: 17475402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption properties of greenwaste biochar for two triazine pesticides.
    Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N
    J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4.
    Ren Y; Li N; Feng J; Luan T; Wen Q; Li Z; Zhang M
    J Colloid Interface Sci; 2012 Feb; 367(1):415-21. PubMed ID: 22088764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient calix[4]arene based silica sorbent for the removal of endosulfan from water.
    Memon S; Memon N; Memon S; Latif Y
    J Hazard Mater; 2011 Feb; 186(2-3):1696-703. PubMed ID: 21216532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bromate removal from water by granular ferric hydroxide (GFH).
    Bhatnagar A; Choi Y; Yoon Y; Shin Y; Jeon BH; Kang JW
    J Hazard Mater; 2009 Oct; 170(1):134-40. PubMed ID: 19481866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm.
    Biswas K; Bandhopadhyay D; Ghosh UC
    J Environ Sci Eng; 2008 Apr; 50(2):153-62. PubMed ID: 19295101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite.
    Zhang Y; Li Q; Sun L; Tang R; Zhai J
    J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water.
    Patra AK; Dutta A; Bhaumik A
    J Hazard Mater; 2012 Jan; 201-202():170-7. PubMed ID: 22169241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent.
    Ren Z; Zhang G; Chen JP
    J Colloid Interface Sci; 2011 Jun; 358(1):230-7. PubMed ID: 21440898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents.
    Boujelben N; Bouzid J; Elouear Z; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Feb; 151(1):103-10. PubMed ID: 17611022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of laterite for the removal of fluoride from contaminated drinking water.
    Sarkar M; Banerjee A; Pramanick PP; Sarkar AR
    J Colloid Interface Sci; 2006 Oct; 302(2):432-41. PubMed ID: 16899254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of cadmium ion removal by base treatment of juniper fiber.
    Min SH; Han JS; Shin EW; Park JK
    Water Res; 2004 Mar; 38(5):1289-95. PubMed ID: 14975662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud.
    Akin I; Arslan G; Tor A; Ersoz M; Cengeloglu Y
    J Hazard Mater; 2012 Oct; 235-236():62-8. PubMed ID: 22846216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and energetics of phosphate sorption in a multi-component Al(III)-Fe(III) hydr(oxide) sorbent system.
    Harvey OR; Rhue RD
    J Colloid Interface Sci; 2008 Jun; 322(2):384-93. PubMed ID: 18433764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.