These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21983077)

  • 21. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.
    O'Connell S; ÓLaighin G; Quinlan LR
    PLoS One; 2017; 12(1):e0169616. PubMed ID: 28085918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tool for measuring workers' sitting time by domain: the Workforce Sitting Questionnaire.
    Chau JY; van der Ploeg HP; Dunn S; Kurko J; Bauman AE
    Br J Sports Med; 2011 Dec; 45(15):1216-22. PubMed ID: 21947817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reliability and validity of the international physical activity questionnaire in the Nord-Trøndelag health study (HUNT) population of men.
    Kurtze N; Rangul V; Hustvedt BE
    BMC Med Res Methodol; 2008 Oct; 8():63. PubMed ID: 18844976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Criterion and concurrent validity of the activPAL™ professional physical activity monitor in adolescent females.
    Dowd KP; Harrington DM; Donnelly AE
    PLoS One; 2012; 7(10):e47633. PubMed ID: 23094069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-living activity counts-derived breaks in sedentary time: Are they real transitions from sitting to standing?
    Barreira TV; Zderic TW; Schuna JM; Hamilton MT; Tudor-Locke C
    Gait Posture; 2015 Jun; 42(1):70-2. PubMed ID: 25953504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validity of the occupational sitting and physical activity questionnaire.
    Chau JY; Van Der Ploeg HP; Dunn S; Kurko J; Bauman AE
    Med Sci Sports Exerc; 2012 Jan; 44(1):118-25. PubMed ID: 21659903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initial assessment of the StepWatch Activity Monitor™ to measure walking activity in Rett syndrome.
    Downs J; Leonard H; Hill K
    Disabil Rehabil; 2012; 34(12):1010-5. PubMed ID: 22107440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free-living energy expenditure in children using multi-sensor activity monitors.
    Arvidsson D; Slinde F; Hulthén L
    Clin Nutr; 2009 Jun; 28(3):305-12. PubMed ID: 19345453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions.
    Toschke JA; von Kries R; Rosenfeld E; Toschke AM
    Clin Nutr; 2007 Aug; 26(4):416-20. PubMed ID: 17512641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.
    Godfrey A; Culhane KM; Lyons GM
    Med Eng Phys; 2007 Oct; 29(8):930-4. PubMed ID: 17134934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Actigraph accelerometer interinstrument reliability during free-living in adults.
    McClain JJ; Sisson SB; Tudor-Locke C
    Med Sci Sports Exerc; 2007 Sep; 39(9):1509-14. PubMed ID: 17805082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical activity pattern of children assessed by triaxial accelerometry.
    Hoos MB; Kuipers H; Gerver WJ; Westerterp KR
    Eur J Clin Nutr; 2004 Oct; 58(10):1425-8. PubMed ID: 15127091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring actical accelerometers as an objective measure of physical activity in people with multiple sclerosis.
    Kayes NM; Schluter PJ; McPherson KM; Leete M; Mawston G; Taylor D
    Arch Phys Med Rehabil; 2009 Apr; 90(4):594-601. PubMed ID: 19345774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy expenditure associated with posture transitions in preschool children.
    Downing KL; Janssen X; Cliff DP; Okely AD; Reilly JJ
    PLoS One; 2019; 14(4):e0215169. PubMed ID: 30986277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reliability and validity of the habitual activity estimation scale (HAES) in patients with cystic fibrosis.
    Wells GD; Wilkes DL; Schneiderman-Walker J; Elmi M; Tullis E; Lands LC; Ratjen F; Coates AL
    Pediatr Pulmonol; 2008 Apr; 43(4):345-53. PubMed ID: 18306334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the Children's Activity Rating Scale (CARS) in young children.
    DuRant RH; Baranowski T; Puhl J; Rhodes T; Davis H; Greaves KA; Thompson WO
    Med Sci Sports Exerc; 1993 Dec; 25(12):1415-21. PubMed ID: 8107551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How reproducible is home-based 24-hour ambulatory monitoring of motor activity in patients with multiple sclerosis?
    Rietberg MB; van Wegen EE; Uitdehaag BM; de Vet HC; Kwakkel G
    Arch Phys Med Rehabil; 2010 Oct; 91(10):1537-41. PubMed ID: 20875511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ambulatory monitoring of children's activity.
    Busser HJ; Ott J; van Lummel RC; Uiterwaal M; Blank R
    Med Eng Phys; 1997 Jul; 19(5):440-5. PubMed ID: 9338884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Psychometric properties of functional balance assessment in children with cerebral palsy.
    Gan SM; Tung LC; Tang YH; Wang CH
    Neurorehabil Neural Repair; 2008; 22(6):745-53. PubMed ID: 18645187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.