BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21983257)

  • 1. Fluorescence characterization of the interaction Suwannee river fulvic acid with the herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) in the absence and presence of aluminum or erbium.
    Elkins KM; Dickerson MA; Traudt EM
    J Inorg Biochem; 2011 Nov; 105(11):1469-76. PubMed ID: 21983257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence characterization of the interaction of Al3+ and Pd2+ with Suwannee River fulvic acid in the absence and presence of the herbicide 2,4-dichlorophenoxyacetic acid.
    Larrivee EM; Elkins KM; Andrews SE; Nelson DJ
    J Inorg Biochem; 2003 Sep; 97(1):32-45. PubMed ID: 14507458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles.
    Manciulea A; Baker A; Lead JR
    Chemosphere; 2009 Aug; 76(8):1023-7. PubMed ID: 19477482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition.
    Zhao J; Nelson DJ
    J Inorg Biochem; 2005 Feb; 99(2):383-96. PubMed ID: 15621270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence and FT-IR spectroscopic studies of Suwannee River fulvic acid complexation with aluminum, terbium and calcium.
    Elkins KM; Nelson DJ
    J Inorg Biochem; 2001 Nov; 87(1-2):81-96. PubMed ID: 11709217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical property of iron binding to Suwannee River fulvic acid.
    Yan M; Li M; Wang D; Xiao F
    Chemosphere; 2013 May; 91(7):1042-8. PubMed ID: 23499223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: comparison of data interpretation based on NICA-Donnan and Stockholm humic models.
    Yan M; Benedetti MF; Korshin GV
    Water Res; 2013 Sep; 47(14):5439-46. PubMed ID: 23850210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions.
    Yan M; Dryer D; Korshin GV; Benedetti MF
    Water Res; 2013 Feb; 47(2):588-96. PubMed ID: 23174533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.
    Gadad P; Nanny MA
    Water Res; 2008 Dec; 42(19):4818-26. PubMed ID: 18849058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence quenching of fulvic acids by fullerene in water.
    Wu F; Bai Y; Mu Y; Pan B; Xing B; Lin Y
    Environ Pollut; 2013 Jan; 172():100-7. PubMed ID: 23022947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching.
    Zhu B; Ryan DK
    J Environ Radioact; 2016 Mar; 153():97-103. PubMed ID: 26736183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe
    Emerson HP; Hickok KA; Powell BA
    J Environ Radioact; 2016 Dec; 165():168-181. PubMed ID: 27723529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions.
    Arakaki T; Saito K; Okada K; Nakajima H; Hitomi Y
    Chemosphere; 2010 Feb; 78(8):1023-7. PubMed ID: 20056515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution.
    Yoon TH; Johnson SB; Brown GE
    Langmuir; 2005 May; 21(11):5002-12. PubMed ID: 15896043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III).
    Li S; Sun W
    J Hazard Mater; 2011 Dec; 197():70-9. PubMed ID: 22001572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Photodegradation of bisphenol A in presence of Suwannee River fulvic acid].
    Yang HS; Yang X; Zhan MJ; Zhang AQ
    Huan Jing Ke Xue; 2005 Jul; 26(4):40-4. PubMed ID: 16212165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined HPLC/HPSEC study of Suwannee River Fulvic Acid adsorptive fractionation on α-aluminum oxide.
    Kreller DI; Schlautman MA; McGunigale SL
    J Colloid Interface Sci; 2013 Jan; 390(1):242-9. PubMed ID: 23089596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical approach of photophysical properties of lanthanum(III) and erbium(III) complexes of tris(methoxymethyl)-5-oxine podant.
    Akbar R; Baral M; Kanungo BK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():365-76. PubMed ID: 24747862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of Fe(3)O(4)-CoO/Al(2)O(3) catalytic ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid.
    Tong SP; Shi R; Zhang H; Ma CA
    J Hazard Mater; 2011 Jan; 185(1):162-7. PubMed ID: 20926187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.