These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21983404)
21. Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst. Zhang R; Wang H; Hou X Chemosphere; 2014 Feb; 97():40-6. PubMed ID: 24275153 [TBL] [Abstract][Full Text] [Related]
22. Kinetic study of solid waste pyrolysis using distributed activation energy model. Bhavanam A; Sastry RC Bioresour Technol; 2015 Feb; 178():126-131. PubMed ID: 25455087 [TBL] [Abstract][Full Text] [Related]
23. Pyrolysis decomposition of tamarind seed for alternative fuel. Kader MA; Islam MR; Parveen M; Haniu H; Takai K Bioresour Technol; 2013 Dec; 149():1-7. PubMed ID: 24084198 [TBL] [Abstract][Full Text] [Related]
24. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere. Zhang J; Chen T; Wu J; Wu J Waste Manag; 2015 Sep; 43():152-61. PubMed ID: 26066574 [TBL] [Abstract][Full Text] [Related]
25. Pyrolysis of ramie residue: kinetic study and fuel gas produced in a cyclone furnace. Cheng G; Zhang L; He P; Yan F; Xiao B; Xu T; Jiang C; Zhang Y; Guo D Bioresour Technol; 2011 Feb; 102(3):3451-6. PubMed ID: 21094601 [TBL] [Abstract][Full Text] [Related]
26. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Veses A; Sanahuja-Parejo O; Callén MS; Murillo R; García T Waste Manag; 2020 Jan; 101():171-179. PubMed ID: 31614284 [TBL] [Abstract][Full Text] [Related]
27. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis. Chihobo CH; Chowdhury A; Kuipa PK; Simbi DJ Waste Manag Res; 2016 Dec; 34(12):1258-1267. PubMed ID: 27729402 [TBL] [Abstract][Full Text] [Related]
28. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments. Thangalazhy-Gopakumar S; Adhikari S; Gupta RB; Tu M; Taylor S Bioresour Technol; 2011 Jun; 102(12):6742-9. PubMed ID: 21530240 [TBL] [Abstract][Full Text] [Related]
29. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell. Alagu RM; Sundaram EG; Natarajan E Bioresour Technol; 2015 Oct; 193():463-8. PubMed ID: 26162524 [TBL] [Abstract][Full Text] [Related]
30. Oxygen isotope analysis of carbonates in the calcite-dolomite-magnesite solid-solution by high-temperature pyrolysis: initial results. Crowley SF; Spero HJ; Winter DA; Sloane HJ; Croudace IW Rapid Commun Mass Spectrom; 2008 Jun; 22(11):1703-13. PubMed ID: 18446821 [TBL] [Abstract][Full Text] [Related]
31. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Kordoghli S; Khiari B; Paraschiv M; Zagrouba F; Tazerout M Waste Manag; 2017 Sep; 67():288-297. PubMed ID: 28601578 [TBL] [Abstract][Full Text] [Related]
32. Pyrolysis treatment of oil sludge and model-free kinetics analysis. Liu J; Jiang X; Zhou L; Han X; Cui Z J Hazard Mater; 2009 Jan; 161(2-3):1208-15. PubMed ID: 18514401 [TBL] [Abstract][Full Text] [Related]
33. Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres. Williams PT; Brindle AJ Environ Technol; 2003 Jul; 24(7):921-9. PubMed ID: 12916844 [TBL] [Abstract][Full Text] [Related]
34. Catalytic reforming of nitrogen-containing volatiles evolved through pyrolysis of composted pig manure. Meesuk S; Sato K; Cao JP; Hoshino A; Utsumi K; Takarada T Bioresour Technol; 2013 Dec; 150():181-6. PubMed ID: 24177151 [TBL] [Abstract][Full Text] [Related]
35. Pyrolysis of waste tyres: a review. Williams PT Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607 [TBL] [Abstract][Full Text] [Related]
36. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Xu J; Jiang J; Sun Y; Chen J Bioresour Technol; 2010 Dec; 101(24):9803-6. PubMed ID: 20696566 [TBL] [Abstract][Full Text] [Related]
37. Pyrolysis of the tetra pak. Korkmaz A; Yanik J; Brebu M; Vasile C Waste Manag; 2009 Nov; 29(11):2836-41. PubMed ID: 19674884 [TBL] [Abstract][Full Text] [Related]
38. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method. Lazdovica K; Liepina L; Kampars V Bioresour Technol; 2016 May; 207():126-33. PubMed ID: 26874441 [TBL] [Abstract][Full Text] [Related]
39. High quality fuel gas from biomass pyrolysis with calcium oxide. Zhao B; Zhang X; Chen L; Sun L; Si H; Chen G Bioresour Technol; 2014 Mar; 156():78-83. PubMed ID: 24486940 [TBL] [Abstract][Full Text] [Related]
40. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas. Bedenbaugh JE; Kim S; Sasmaz E; Lauterbach J ACS Comb Sci; 2013 Sep; 15(9):491-7. PubMed ID: 23879196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]