These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 21983555)
1. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE. Izquierdo-Álvarez A; Martínez-Ruiz A J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555 [TBL] [Abstract][Full Text] [Related]
2. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia. Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641 [TBL] [Abstract][Full Text] [Related]
3. The Expanding Landscape of the Thiol Redox Proteome. Yang J; Carroll KS; Liebler DC Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762 [TBL] [Abstract][Full Text] [Related]
5. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review. Majewska AM; Mostek A Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010 [TBL] [Abstract][Full Text] [Related]
6. Quantitative proteomics by fluorescent labeling of cysteine residues using a set of two cyanine-based or three rhodamine-based dyes. Volke D; Hoffmann R Electrophoresis; 2008 Nov; 29(22):4516-26. PubMed ID: 19035404 [TBL] [Abstract][Full Text] [Related]
7. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Liu P; Zhang H; Wang H; Xia Y Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Chan HL; Gharbi S; Gaffney PR; Cramer R; Waterfield MD; Timms JF Proteomics; 2005 Jul; 5(11):2908-26. PubMed ID: 15954156 [TBL] [Abstract][Full Text] [Related]
9. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. Bykova NV; Hoehn B; Rampitsch C; Hu J; Stebbing JA; Knox R Phytochemistry; 2011 Jul; 72(10):1162-72. PubMed ID: 21295800 [TBL] [Abstract][Full Text] [Related]
10. Global approaches for protein thiol redox state detection. Knoke LR; Leichert LI Curr Opin Chem Biol; 2023 Dec; 77():102390. PubMed ID: 37797572 [TBL] [Abstract][Full Text] [Related]
11. Proteomics approaches to study the redox state of cysteine-containing proteins. Camerini S; Polci ML; Bachi A Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913 [TBL] [Abstract][Full Text] [Related]
12. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Gu L; Robinson RA Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938 [TBL] [Abstract][Full Text] [Related]
13. Redox Proteomics Applied to the Thiol Secretome. Ghezzi P; Chan P Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336 [TBL] [Abstract][Full Text] [Related]
14. Click-PEGylation - A mobility shift approach to assess the redox state of cysteines in candidate proteins. van Leeuwen LAG; Hinchy EC; Murphy MP; Robb EL; Cochemé HM Free Radic Biol Med; 2017 Jul; 108():374-382. PubMed ID: 28366801 [TBL] [Abstract][Full Text] [Related]
15. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Lindahl M; Mata-Cabana A; Kieselbach T Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844 [TBL] [Abstract][Full Text] [Related]
16. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Duan J; Gaffrey MJ; Qian WJ Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434 [TBL] [Abstract][Full Text] [Related]