These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Development of a new C14 monolithic silica column containing embedded polar groups for pressurized capillary electrochromatography. Ye F; Li S; Zhao S J Sep Sci; 2007 Nov; 30(17):3027-34. PubMed ID: 17924583 [TBL] [Abstract][Full Text] [Related]
24. Comparative enantioseparations of pharmaceuticals in capillary electrochromatography on polysaccharide-based chiral stationary phases containing selectors with or without chlorinated derivatives. Hendrickx A; Mangelings D; Chankvetadze B; Vander Heyden Y Electrophoresis; 2010 Oct; 31(19):3207-16. PubMed ID: 22216432 [TBL] [Abstract][Full Text] [Related]
25. Preparation of a positively charged cellulose derivative chiral stationary phase with copolymerization reaction for capillary electrochromatographic separation of enantiomers. Chen X; Qin F; Liu Y; Kong L; Zou H Electrophoresis; 2004 Aug; 25(16):2817-24. PubMed ID: 15352014 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the chiral recognition properties as well as the column performance of four chiral stationary phases based on cellulose (3,5-dimethylphenylcarbamate) by parallel HPLC and SFC. Nelander H; Andersson S; Ohlén K J Chromatogr A; 2011 Dec; 1218(52):9397-405. PubMed ID: 22119140 [TBL] [Abstract][Full Text] [Related]
27. Hybrid monolithic columns coated with cellulose tris(3,5-dimethylphenyl-carbamate) for enantioseparations in capillary electrochromatography and capillary liquid chromatography. Ou J; Lin H; Tang S; Zhang Z; Dong J; Zou H J Chromatogr A; 2012 Dec; 1269():372-8. PubMed ID: 23022241 [TBL] [Abstract][Full Text] [Related]
28. Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography. Tran le N; Park JH J Chromatogr A; 2015 May; 1396():140-7. PubMed ID: 25892638 [TBL] [Abstract][Full Text] [Related]
29. Enantioseparations on amylose tris(5-chloro-2-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography. Fanali S; D'Orazio G; Lomsadze K; Samakashvili S; Chankvetadze B J Chromatogr A; 2010 Feb; 1217(7):1166-74. PubMed ID: 19800073 [TBL] [Abstract][Full Text] [Related]
30. Application of Click-chemistry-based perphenylcarbamated beta-CD chiral stationary phase in CEC. Wang Y; Xiao Y; Tan TT; Ng SC Electrophoresis; 2009 Feb; 30(4):705-11. PubMed ID: 19156766 [TBL] [Abstract][Full Text] [Related]
31. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). Chankvetadze B; Yamamoto C; Kamigaito M; Tanaka N; Nakanishi K; Okamoto Y J Chromatogr A; 2006 Mar; 1110(1-2):46-52. PubMed ID: 16476435 [TBL] [Abstract][Full Text] [Related]
32. Enantioseparations in non-aqueous capillary electrochromatography using polysaccharide type chiral stationary phases. Girod M; Chankvetadze B; Blaschke G J Chromatogr A; 2000 Jul; 887(1-2):439-55. PubMed ID: 10961332 [TBL] [Abstract][Full Text] [Related]
33. Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography. Tran le N; Dixit S; Park JH J Chromatogr A; 2014 Aug; 1356():289-93. PubMed ID: 25037777 [TBL] [Abstract][Full Text] [Related]
34. Open tubular capillary columns with basic templates made by the generalized preparation protocol in capillary electrochromatography chiral separation and template structural effects on chiral separation capability. Zaidi SA; Lee SM; Cheong WJ J Chromatogr A; 2011 Mar; 1218(9):1291-9. PubMed ID: 21251662 [TBL] [Abstract][Full Text] [Related]
35. Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. D'Orazio G; Fanali C; Fanali S; Gentili A; Karchkhadze M; Chankvetadze B J Chromatogr A; 2020 Jul; 1623():461213. PubMed ID: 32505297 [TBL] [Abstract][Full Text] [Related]
36. Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography. Preinerstorfer B; Lubda D; Lindner W; Lämmerhofer M J Chromatogr A; 2006 Feb; 1106(1-2):94-105. PubMed ID: 16388817 [TBL] [Abstract][Full Text] [Related]
37. Electrochromatographic performance of conventional and polar-embedded C16 silica monolithic stationary phases. Ye F; Huang B; Wang S; Zhao S J Sep Sci; 2010 Nov; 33(21):3386-92. PubMed ID: 20886520 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of chlorine containing cellulose-based chiral stationary phases for the LC enantioseparation of basic pharmaceuticals using polar non-aqueous mobile phases. Dossou KS; Chiap P; Servais AC; Fillet M; Crommen J J Sep Sci; 2011 Mar; 34(6):617-22. PubMed ID: 21284081 [TBL] [Abstract][Full Text] [Related]
39. Effect of organic solvent, electrolyte salt and a loading of cellulose tris (3,5-dichlorophenyl-carbamate) on silica gel on enantioseparation characteristics in capillary electrochromatography. Chankvetadze B; Kartozia I; Breitkreutz J; Okamoto Y; Blaschke G Electrophoresis; 2001 Sep; 22(15):3327-34. PubMed ID: 11589297 [TBL] [Abstract][Full Text] [Related]
40. Immobilization of cellulose phenylcarbamate onto silica gel via in termolecular polycondensation of triethoxysilyl groups introduced with (3-glycidoxypropyl)triethoxysilane. Tang S; Okamoto Y J Sep Sci; 2008 Oct; 31(18):3133-8. PubMed ID: 18773418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]