These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 21983922)

  • 1. Surrogate reporters for enrichment of cells with nuclease-induced mutations.
    Kim H; Um E; Cho SR; Jung C; Kim H; Kim JS
    Nat Methods; 2011 Oct; 8(11):941-3. PubMed ID: 21983922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs).
    Moore FE; Reyon D; Sander JD; Martinez SA; Blackburn JS; Khayter C; Ramirez CL; Joung JK; Langenau DM
    PLoS One; 2012; 7(5):e37877. PubMed ID: 22655075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome engineering in human cells.
    Song M; Kim YH; Kim JS; Kim H
    Methods Enzymol; 2014; 546():93-118. PubMed ID: 25398337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient disruption of endogenous Bombyx gene by TAL effector nucleases.
    Sajwan S; Takasu Y; Tamura T; Uchino K; Sezutsu H; Zurovec M
    Insect Biochem Mol Biol; 2013 Jan; 43(1):17-23. PubMed ID: 23142190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases.
    Watanabe T; Ochiai H; Sakuma T; Horch HW; Hamaguchi N; Nakamura T; Bando T; Ohuchi H; Yamamoto T; Noji S; Mito T
    Nat Commun; 2012; 3():1017. PubMed ID: 22910363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of cells with TALEN-induced mutations using surrogate reporters.
    Kim YH; Ramakrishna S; Kim H; Kim JS
    Methods; 2014 Aug; 69(1):108-17. PubMed ID: 24780521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations.
    Kim H; Kim MS; Wee G; Lee CI; Kim H; Kim JS
    PLoS One; 2013; 8(2):e56476. PubMed ID: 23441197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology.
    Jo YI; Kim H; Ramakrishna S
    Cell Mol Life Sci; 2015 Oct; 72(20):3819-30. PubMed ID: 26089249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly.
    Chen S; Oikonomou G; Chiu CN; Niles BJ; Liu J; Lee DA; Antoshechkin I; Prober DA
    Nucleic Acids Res; 2013 Feb; 41(4):2769-78. PubMed ID: 23303782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of surrogate reporter systems for enrichment of cells with mutations induced by genome editors.
    He Z; Shi X; Liu M; Sun G; Proudfoot C; Whitelaw CB; Lillico SG; Chen Y
    J Biotechnol; 2016 Mar; 221():49-54. PubMed ID: 26778541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of Programmable Nucleases for Genome Engineering.
    Chandrasegaran S; Carroll D
    J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A suicidal zinc finger nuclease expression coupled with a surrogate reporter for efficient genome engineering.
    Zhang C; Xu K; Hu L; Wang L; Zhang T; Ren C; Zhang Z
    Biotechnol Lett; 2015 Feb; 37(2):299-305. PubMed ID: 25280729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 Gene repair with zinc finger nucleases optimised by yeast 1-hybrid and validated by Solexa sequencing.
    Herrmann F; Garriga-Canut M; Baumstark R; Fajardo-Sanchez E; Cotterell J; Minoche A; Himmelbauer H; Isalan M
    PLoS One; 2011; 6(6):e20913. PubMed ID: 21695267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating designed zinc-finger nucleases with minimal cytotoxicity.
    Ramalingam S; Kandavelou K; Rajenderan R; Chandrasegaran S
    J Mol Biol; 2011 Jan; 405(3):630-41. PubMed ID: 21094162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption.
    Doyon Y; Choi VM; Xia DF; Vo TD; Gregory PD; Holmes MC
    Nat Methods; 2010 Jun; 7(6):459-60. PubMed ID: 20436476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis.
    Thomas HR; Percival SM; Yoder BK; Parant JM
    PLoS One; 2014; 9(12):e114632. PubMed ID: 25503746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases.
    Mashimo T; Takizawa A; Voigt B; Yoshimi K; Hiai H; Kuramoto T; Serikawa T
    PLoS One; 2010 Jan; 5(1):e8870. PubMed ID: 20111598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and application of site-specific artificial nucleases for targeted gene editing.
    Kok FO; Gupta A; Lawson ND; Wolfe SA
    Methods Mol Biol; 2014; 1101():267-303. PubMed ID: 24233786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of off-target cleavage sites of zinc finger nucleases and TAL effector nucleases using predictive models.
    Fine EJ; Cradick TJ; Bao G
    Methods Mol Biol; 2014; 1114():371-83. PubMed ID: 24557916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases.
    Watanabe M; Umeyama K; Matsunari H; Takayanagi S; Haruyama E; Nakano K; Fujiwara T; Ikezawa Y; Nakauchi H; Nagashima H
    Biochem Biophys Res Commun; 2010 Nov; 402(1):14-8. PubMed ID: 20875794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.