These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2198405)

  • 1. Modified electrode surface in amperometric biosensors.
    Bartlett PN
    Med Biol Eng Comput; 1990 May; 28(3):B10-7. PubMed ID: 2198405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for the development of amperometric enzyme electrodes.
    Bartlett PN; Whitaker RG
    Biosensors; 1987-1988; 3(6):359-79. PubMed ID: 3333622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures.
    Schuhmann W
    J Biotechnol; 2002 Feb; 82(4):425-41. PubMed ID: 11996220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer modified electrodes for the reversible oxidation-reduction of NAD+/NADH for use within amperometric biosensors.
    Warrington RJ; Higson SP
    Biomed Sci Instrum; 2001; 37():75-80. PubMed ID: 11347449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Modification of Electrode Materials for Protein Electrochemistry.
    Jeuken LJC
    Adv Biochem Eng Biotechnol; 2016; 158():43-73. PubMed ID: 27506830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-transfer mechanisms in amperometric biosensors.
    Habermüller K; Mosbach M; Schuhmann W
    Fresenius J Anal Chem; 2000; 366(6-7):560-8. PubMed ID: 11225768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes.
    Alvarez-González MI; Saidman SB; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P
    Anal Chem; 2000 Feb; 72(3):520-7. PubMed ID: 10695137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical strategies for amperometric biosensors based on chemically modified electrodes.
    Lorenzo E; Pariente F; Hernàndez L; Tobalina F; Darder M; Wu Q; Maskus M; Abruña HD
    Biosens Bioelectron; 1998 Mar; 13(3-4):319-32. PubMed ID: 9642768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified electrodes for NADH oxidation and dehydrogenase-based biosensors.
    Bartlett PN; Simon E; Toh CS
    Bioelectrochemistry; 2002 May; 56(1-2):117-22. PubMed ID: 12009456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodes modified with nitrofluorenone derivatives as a basis for new biosensors.
    Mano N; Kuhn A
    Biosens Bioelectron; 2001 Dec; 16(9-12):653-60. PubMed ID: 11679241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid.
    Behera S; Raj CR
    Biosens Bioelectron; 2007 Nov; 23(4):556-61. PubMed ID: 17719217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors.
    Yao Y; Shiu KK
    Anal Bioanal Chem; 2007 Jan; 387(1):303-9. PubMed ID: 17089098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytical properties of polymethylferrocenyl dendrimers and their applications in biosensing.
    Armada MP; Losada J; Zamora M; Alonso B; Cuadrado I; Casado CM
    Bioelectrochemistry; 2006 Sep; 69(1):65-73. PubMed ID: 16443400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors.
    Silber A; Hampp N; Schuhmann W
    Biosens Bioelectron; 1996; 11(3):215-23. PubMed ID: 8562006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect electron transfer between electrodes and redox proteins.
    Frew JE; Hill HA
    Eur J Biochem; 1988 Mar; 172(2):261-9. PubMed ID: 3280307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors.
    Serban S; El Murr N
    Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical properties of Nile Blue covalently immobilized on self-assembled thiol-monolayer modified gold electrodes.
    Liu HH; Lu JL; Zhang M; Pang DW
    Anal Sci; 2002 Dec; 18(12):1339-44. PubMed ID: 12502086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.