These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2198405)

  • 21. New redox mediator-modified polysulfone composite films for the development of dehydrogenase-based biosensors.
    Prieto-Simón B; Fàbregas E
    Biosens Bioelectron; 2006 Jul; 22(1):131-7. PubMed ID: 16448813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor.
    Pakapongpan S; Poo-Arporn RP
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():398-405. PubMed ID: 28482543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose.
    Barsan MM; Brett CM
    Bioelectrochemistry; 2009 Sep; 76(1-2):135-40. PubMed ID: 19349215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From single-biomolecule electrochemistry to biosensors and biofuel cells.
    Calvo EJ
    Chemphyschem; 2009 Jul; 10(9-10):1677-9. PubMed ID: 19472256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode.
    Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q
    Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes.
    Wang Y; Du J; Li Y; Shan D; Zhou X; Xue Z; Lu X
    Colloids Surf B Biointerfaces; 2012 Feb; 90():62-7. PubMed ID: 22019049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosensors and bioelectrochemistry.
    Murphy L
    Curr Opin Chem Biol; 2006 Apr; 10(2):177-84. PubMed ID: 16516536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactivities of organic phase biosensors: 6. Square-wave and differential pulse studies of genetically engineered cytochrome P450(cam) (CYP101) bioelectrodes in selected solvents.
    Iwuoha EI; Smyth MR
    Biosens Bioelectron; 2003 Mar; 18(2-3):237-44. PubMed ID: 12485770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells.
    Andriukonis E; Celiesiute-Germaniene R; Ramanavicius S; Viter R; Ramanavicius A
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.
    Nöll T; Nöll G
    Chem Soc Rev; 2011 Jul; 40(7):3564-76. PubMed ID: 21509355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids.
    Ferapontova EE
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):197-218. PubMed ID: 29894229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.
    Sun W; Cao L; Deng Y; Gong S; Shi F; Li G; Sun Z
    Anal Chim Acta; 2013 Jun; 781():41-7. PubMed ID: 23684463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes.
    Valentini F; Salis A; Curulli A; Palleschi G
    Anal Chem; 2004 Jun; 76(11):3244-8. PubMed ID: 15167808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.
    Svítková J; Ignat T; Švorc Ľ; Labuda J; Barek J
    Crit Rev Anal Chem; 2016 May; 46(3):248-56. PubMed ID: 26337147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.
    Deng S; Jian G; Lei J; Hu Z; Ju H
    Biosens Bioelectron; 2009 Oct; 25(2):373-7. PubMed ID: 19683424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amperometric sensor for hydrogen peroxide based on direct electron transfer of spinach ferredoxin on Au electrode.
    Yagati AK; Lee T; Min J; Choi JW
    Bioelectrochemistry; 2011 Feb; 80(2):169-74. PubMed ID: 20851693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances on developing 3rd generation enzyme electrode for biosensor applications.
    Das P; Das M; Chinnadayyala SR; Singha IM; Goswami P
    Biosens Bioelectron; 2016 May; 79():386-97. PubMed ID: 26735873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.