These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 21984188)
1. The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae. Helbig AO; Daran-Lapujade P; van Maris AJ; de Hulster EA; de Ridder D; Pronk JT; Heck AJ; Slijper M Mol Biosyst; 2011 Dec; 7(12):3316-26. PubMed ID: 21984188 [TBL] [Abstract][Full Text] [Related]
3. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Helbig AO; de Groot MJ; van Gestel RA; Mohammed S; de Hulster EA; Luttik MA; Daran-Lapujade P; Pronk JT; Heck AJ; Slijper M Proteomics; 2009 Oct; 9(20):4787-98. PubMed ID: 19750512 [TBL] [Abstract][Full Text] [Related]
4. Exploring the dynamics of the yeast proteome by means of 2-DE. Massoni A; Moes S; Perrot M; Jenoe P; Boucherie H Proteomics; 2009 Oct; 9(20):4674-85. PubMed ID: 19795422 [TBL] [Abstract][Full Text] [Related]
5. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
6. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions]. Zhang HM; Yao SJ; Peng LF; Shimizu K Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613 [TBL] [Abstract][Full Text] [Related]
7. Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. Jayapal KP; Sui S; Philp RJ; Kok YJ; Yap MG; Griffin TJ; Hu WS J Proteome Res; 2010 May; 9(5):2087-97. PubMed ID: 20184388 [TBL] [Abstract][Full Text] [Related]
8. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078 [TBL] [Abstract][Full Text] [Related]
9. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Newman JR; Ghaemmaghami S; Ihmels J; Breslow DK; Noble M; DeRisi JL; Weissman JS Nature; 2006 Jun; 441(7095):840-6. PubMed ID: 16699522 [TBL] [Abstract][Full Text] [Related]
10. Determinants and Regulation of Protein Turnover in Yeast. Martin-Perez M; Villén J Cell Syst; 2017 Sep; 5(3):283-294.e5. PubMed ID: 28918244 [TBL] [Abstract][Full Text] [Related]
11. Yeast expression proteomics by high-resolution mass spectrometry. Walther TC; Olsen JV; Mann M Methods Enzymol; 2010; 470():259-80. PubMed ID: 20946814 [TBL] [Abstract][Full Text] [Related]
12. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Pham TK; Wright PC J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174 [TBL] [Abstract][Full Text] [Related]
14. Global analysis of the yeast osmotic stress response by quantitative proteomics. Soufi B; Kelstrup CD; Stoehr G; Fröhlich F; Walther TC; Olsen JV Mol Biosyst; 2009 Nov; 5(11):1337-46. PubMed ID: 19823750 [TBL] [Abstract][Full Text] [Related]
15. Proteins deleterious on overexpression are associated with high intrinsic disorder, specific interaction domains, and low abundance. Ma L; Pang CN; Li SS; Wilkins MR J Proteome Res; 2010 Mar; 9(3):1218-25. PubMed ID: 20052999 [TBL] [Abstract][Full Text] [Related]
16. Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. Van Dyke N; Baby J; Van Dyke MW J Mol Biol; 2006 May; 358(4):1023-31. PubMed ID: 16580682 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of D10-Leu metabolic labeling coupled with MALDI-MS analysis in studying the response of the yeast proteome to H2O2 challenge. Jiang H; English AM J Proteome Res; 2006 Oct; 5(10):2539-46. PubMed ID: 17022625 [TBL] [Abstract][Full Text] [Related]
18. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring. Di Girolamo F; Righetti PG; Soste M; Feng Y; Picotti P J Proteomics; 2013 Aug; 89():215-26. PubMed ID: 23747450 [TBL] [Abstract][Full Text] [Related]
19. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043 [TBL] [Abstract][Full Text] [Related]
20. Amino acid residue specific stable isotope labeling for quantitative proteomics. Zhu H; Pan S; Gu S; Bradbury EM; Chen X Rapid Commun Mass Spectrom; 2002; 16(22):2115-23. PubMed ID: 12415544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]