These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 21984234)
1. In vitro fermentation of sugar beet arabino-oligosaccharides by fecal microbiota obtained from patients with ulcerative colitis to selectively stimulate the growth of Bifidobacterium spp. and Lactobacillus spp. Vigsnæs LK; Holck J; Meyer AS; Licht TR Appl Environ Microbiol; 2011 Dec; 77(23):8336-44. PubMed ID: 21984234 [TBL] [Abstract][Full Text] [Related]
2. Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of Bifidobacterium spp. in human fecal in vitro fermentations. Holck J; Lorentzen A; Vigsnæs LK; Licht TR; Mikkelsen JD; Meyer AS J Agric Food Chem; 2011 Jun; 59(12):6511-9. PubMed ID: 21574556 [TBL] [Abstract][Full Text] [Related]
3. A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans. Sulek K; Vigsnaes LK; Schmidt LR; Holck J; Frandsen HL; Smedsgaard J; Skov TH; Meyer AS; Licht TR Anaerobe; 2014 Aug; 28():68-77. PubMed ID: 24905430 [TBL] [Abstract][Full Text] [Related]
4. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Moon JS; Shin SY; Choi HS; Joo W; Cho SK; Li L; Kang JH; Kim TJ; Han NS Carbohydr Polym; 2015 Oct; 131():50-6. PubMed ID: 26256159 [TBL] [Abstract][Full Text] [Related]
5. In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. Al-Tamimi MA; Palframan RJ; Cooper JM; Gibson GR; Rastall RA J Appl Microbiol; 2006 Feb; 100(2):407-14. PubMed ID: 16430518 [TBL] [Abstract][Full Text] [Related]
6. Dietary Casein and Soy Protein Isolate Modulate the Effects of Raffinose and Fructooligosaccharides on the Composition and Fermentation of Gut Microbiota in Rats. Bai G; Ni K; Tsuruta T; Nishino N J Food Sci; 2016 Aug; 81(8):H2093-8. PubMed ID: 27434756 [TBL] [Abstract][Full Text] [Related]
7. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics. Takagi R; Sasaki K; Sasaki D; Fukuda I; Tanaka K; Yoshida K; Kondo A; Osawa R PLoS One; 2016; 11(8):e0160533. PubMed ID: 27483470 [TBL] [Abstract][Full Text] [Related]
8. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota. La Rosa SL; Kachrimanidou V; Buffetto F; Pope PB; Pudlo NA; Martens EC; Rastall RA; Gibson GR; Westereng B mSphere; 2019 Jan; 4(1):. PubMed ID: 30674645 [TBL] [Abstract][Full Text] [Related]
9. Dietary Supplementation with Sugar Beet Fructooligosaccharides and Garlic Residues Promotes Growth of Beneficial Bacteria and Increases Weight Gain in Neonatal Lambs. Quijada NM; Bodas R; Lorenzo JM; Schmitz-Esser S; Rodríguez-Lázaro D; Hernández M Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32823755 [TBL] [Abstract][Full Text] [Related]
10. Comparison of prebiotic candidates in ulcerative colitis using an in vitro fermentation model. Kennedy JM; De Silva A; Walton GE; Poveda C; Gibson GR J Appl Microbiol; 2024 Feb; 135(2):. PubMed ID: 38337173 [TBL] [Abstract][Full Text] [Related]
11. Acerola (Malpighia glabra L.) and guava (Psidium guayaba L.) industrial processing by-products stimulate probiotic Lactobacillus and Bifidobacterium growth and induce beneficial changes in colonic microbiota. Menezes FNDD; de Melo FHC; Vieira ARS; Almeida ÉTC; Lima MS; Aquino JS; Gomez-Zavaglia A; Magnani M; de Souza EL J Appl Microbiol; 2021 Apr; 130(4):1323-1336. PubMed ID: 32808408 [TBL] [Abstract][Full Text] [Related]
12. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Mäkeläinen H; Saarinen M; Stowell J; Rautonen N; Ouwehand AC Benef Microbes; 2010 Jun; 1(2):139-48. PubMed ID: 21840802 [TBL] [Abstract][Full Text] [Related]
13. In vitro fermentation of lactulose-derived oligosaccharides by mixed fecal microbiota. Cardelle-Cobas A; Olano A; Corzo N; Villamiel M; Collins M; Kolida S; Rastall RA J Agric Food Chem; 2012 Feb; 60(8):2024-32. PubMed ID: 22292561 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of potential prebiotic α-glucooligosaccharides using microbial glucansucrase and their in vitro fecal fermentation. Hu X; Song L; Yang Y; Jin Z; Miao M Food Funct; 2020 Feb; 11(2):1672-1683. PubMed ID: 32031198 [TBL] [Abstract][Full Text] [Related]
15. Fecal microbiota transplantation combined with prebiotics ameliorates ulcerative colitis in mice. Qian X; Jiang H; Wu Y; Shao H; He W; He Y; Bao X; He L; Jia Y; Xu Z Future Microbiol; 2023 Nov; 18():1251-1263. PubMed ID: 37830929 [TBL] [Abstract][Full Text] [Related]
16. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. Martín-Peláez S; Gibson GR; Martín-Orúe SM; Klinder A; Rastall RA; La Ragione RM; Woodward MJ; Costabile A FEMS Microbiol Ecol; 2008 Dec; 66(3):608-19. PubMed ID: 19049655 [TBL] [Abstract][Full Text] [Related]
17. Fermentation properties and potential prebiotic activity of Bimuno® galacto-oligosaccharide (65 % galacto-oligosaccharide content) on in vitro gut microbiota parameters. Grimaldi R; Swann JR; Vulevic J; Gibson GR; Costabile A Br J Nutr; 2016 Aug; 116(3):480-6. PubMed ID: 27267934 [TBL] [Abstract][Full Text] [Related]
18. Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. Vulevic J; Rastall RA; Gibson GR FEMS Microbiol Lett; 2004 Jul; 236(1):153-9. PubMed ID: 15212805 [TBL] [Abstract][Full Text] [Related]
19. In vitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Sims IM; Ryan JL; Kim SH Anaerobe; 2014 Feb; 25():11-7. PubMed ID: 24239979 [TBL] [Abstract][Full Text] [Related]