BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 21984343)

  • 21. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Future aspect of robotic surgery].
    Shimada M; Sugimachi K
    Fukuoka Igaku Zasshi; 2002 Apr; 93(4):57-63. PubMed ID: 12048908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surgery with cooperative robots.
    Lehman AC; Berg KA; Dumpert J; Wood NA; Visty AQ; Rentschler ME; Platt SR; Farritor SM; Oleynikov D
    Comput Aided Surg; 2008 Mar; 13(2):95-105. PubMed ID: 18317958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spherical mechanism analysis of a surgical robot for minimally invasive surgery -- analytical and experimental approaches.
    Rosen J; Lum M; Trimble D; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2005; 111():422-8. PubMed ID: 15718772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Totally minimally invasive robot-assisted unstented pyeloplasty using the Zeus Microwrist Surgical System: an animal study.
    Lorincz A; Knight CG; Kant AJ; Langenburg SE; Rabah R; Gidell K; Dawe E; Klein MD; McLorie G
    J Pediatr Surg; 2005 Feb; 40(2):418-22. PubMed ID: 15750940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part II. Telesurgery evaluation.
    Park JW; Lee DH; Kim YW; Lee BH; Jo YH
    Minim Invasive Ther Allied Technol; 2012 May; 21(3):195-200. PubMed ID: 21815881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakthrough: robotic surgery. How robots are transforming minimally invasive surgical procedures.
    Harv Womens Health Watch; 2012 Nov; 20(3):1, 7. PubMed ID: 23326903
    [No Abstract]   [Full Text] [Related]  

  • 29. Kinematic design considerations for minimally invasive surgical robots: an overview.
    Kuo CH; Dai JS; Dasgupta P
    Int J Med Robot; 2012 Jun; 8(2):127-45. PubMed ID: 22228671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH; Choi J; Park JW; Bach DJ; Song SJ; Kim YH; Jo Y; Sun K
    ASAIO J; 2009; 55(1):83-5. PubMed ID: 19092664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A micro creeping robot for colonoscopy based on the earthworm.
    Zuo J; Yan G; Gao Z
    J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and evaluation of a slave manipulator with roll-pitch-roll wrist and automatic tool loading mechanism in telerobotic surgery.
    Kim KY; Lee JJ
    Int J Med Robot; 2012 Dec; 8(4):421-35. PubMed ID: 23081717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery.
    Schurr MO; Arezzo A; Buess GF
    Eur J Cardiothorac Surg; 1999 Nov; 16 Suppl 2():S97-105. PubMed ID: 10613568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Future perspectives in robotic surgery.
    Wedmid A; Llukani E; Lee DI
    BJU Int; 2011 Sep; 108(6 Pt 2):1028-36. PubMed ID: 21917107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microgroove cushion of robotic endoscope for active locomotion in the gastrointestinal tract.
    Gao P; Yan G; Wang Z; Jiang P; Liu H
    Int J Med Robot; 2012 Dec; 8(4):398-406. PubMed ID: 22362705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surgical robotics and image guided therapy in pediatric surgery: emerging and converging minimal access technologies.
    Chandra V; Dutta S; Albanese CT
    Semin Pediatr Surg; 2006 Nov; 15(4):267-75. PubMed ID: 17055957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.