These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21984520)

  • 1. A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study.
    Tam WK; Tong KY; Meng F; Gao S
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):617-27. PubMed ID: 21984520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: a multi-session dataset study.
    Tam WK; Ke Z; Tong KY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6344-7. PubMed ID: 22255789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface.
    Ang KK; Guan C; Chua KS; Ang BT; Kuah CW; Wang C; Phua KS; Chin ZY; Zhang H
    Clin EEG Neurosci; 2011 Oct; 42(4):253-8. PubMed ID: 22208123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.
    Bai O; Lin P; Huang D; Fei DY; Floeter MK
    Clin Neurophysiol; 2010 Aug; 121(8):1293-303. PubMed ID: 20347612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving classification accuracy of motor imagery EEG using genetic feature selection.
    Hsu WY
    Clin EEG Neurosci; 2014 Jul; 45(3):163-8. PubMed ID: 24048242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study.
    Vučković A; Wallace L; Allan DB
    J Neurol Phys Ther; 2015 Jan; 39(1):3-14. PubMed ID: 25415550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test.
    Qian K; Nikolov P; Huang D; Fei DY; Chen X; Bai O
    Clin Neurophysiol; 2010 Aug; 121(8):1304-13. PubMed ID: 20347386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training.
    Liu Y; Li M; Zhang H; Wang H; Li J; Jia J; Wu Y; Zhang L
    J Neurosci Methods; 2014 Jan; 222():238-49. PubMed ID: 24280103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaginary motor movement EEG classification by Accumulative-Autocorrelation-Pulse.
    Mayer IV; Takahashi H; Sakamoto K
    Electromyogr Clin Neurophysiol; 2001; 41(3):159-69. PubMed ID: 11402508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.