These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21984521)

  • 1. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):677-85. PubMed ID: 21984521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
    Stepp CE; An Q; Matsuoka Y
    PLoS One; 2012; 7(2):e32743. PubMed ID: 22384283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrotactile feedback aids EMG control of object manipulation.
    Stepp CE; Chang C; Malhotra M; Matsuoka Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1061-4. PubMed ID: 22254496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):31-7. PubMed ID: 21997322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.
    Stepp CE; Matsuoka Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2089-92. PubMed ID: 21095683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrotactile sensory substitution for electromyographic control of object manipulation.
    Rombokas E; Stepp CE; Chang C; Malhotra M; Matsuoka Y
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2226-32. PubMed ID: 23508245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-day training with vibrotactile feedback for virtual object manipulation.
    An Q; Matsuoka Y; Stepp CE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975337. PubMed ID: 22275542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal influences on discrimination of vibrotactile stimuli on the arm.
    Shah VA; Casadio M; Scheidt RA; Mrotek LA
    Exp Brain Res; 2019 Aug; 237(8):2075-2086. PubMed ID: 31175382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time vibrotactile pattern generation and identification using discrete event-driven feedback.
    Erbaş İ; Güçlü B
    Somatosens Mot Res; 2024 Jun; 41(2):77-89. PubMed ID: 36751096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison of Vibrotactile Feedback and Electrical Muscle Stimulation (EMS) for Motor Response During Active Hand Movement.
    Korres G; Park W; Eid M
    IEEE Trans Haptics; 2022; 15(1):74-78. PubMed ID: 35077368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating of vibrotactile detection during visually guided bimanual reaches.
    Buckingham G; Carey DP; Colino FL; deGrosbois J; Binsted G
    Exp Brain Res; 2010 Mar; 201(3):411-9. PubMed ID: 19851758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of age on postural and cognitive task performance while using vibrotactile feedback.
    Lin CC; Whitney SL; Loughlin PJ; Furman JM; Redfern MS; Sienko KH; Sparto PJ
    J Neurophysiol; 2015 Apr; 113(7):2127-36. PubMed ID: 25589585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An n-back task using vibrotactile stimulation with comparison to an auditory analogue.
    Klatzky RL; Giudice NA; Marston JR; Tietz J; Golledge RG; Loomis JM
    Behav Res Methods; 2008 Feb; 40(1):367-72. PubMed ID: 18411562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptic Feedback, Performance and Arousal: A Comparison Study in an Immersive VR Motor Skill Training Task.
    Radhakrishnan U; Kuang L; Koumaditis K; Chinello F; Pacchierotti C
    IEEE Trans Haptics; 2024; 17(2):249-262. PubMed ID: 37747855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-computer interface with vibrotactile biofeedback for haptic information.
    Chatterjee A; Aggarwal V; Ramos A; Acharya S; Thakor NV
    J Neuroeng Rehabil; 2007 Oct; 4():40. PubMed ID: 17941986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.